Today Schedule

- Lecture
- Forth tutorial session / coffee break
- Lecture
- Fifth tutorial session / student presentations
- Bye-bye... and hope to see you soon

4. Dwarf Galaxies as challenges to cosmology Daniel Ceverino

assistant professor at the Cosmic Dawn Center University of Copenhagen, Denmark

Annual Review of Astronomy and Astrophysics Small-Scale Challenges to the ACDM Paradigm

James S. Bullock¹ and Michael Boylan-Kolchin²

¹Department of Physics and Astronomy, University of California, Irvine, California 92697; email: bullock@uci.edu

²Department of Astronomy, The University of Texas at Austin, Austin, Texas 78712; email: mbk@astro.as.utexas.edu

Annu. Rev. Astron. Astrophys. 2017. 55:343-87

First published as a Review in Advance on June 28, 2017

The Annual Review of Astronomy and Astrophysics is online at astro.annualreviews.org

https://doi.org/10.1146/annurev-astro-091916-055313

The zoo of dwarf galaxies

Dwarf dynamics

rotation curves

$$V_c^2 = V_{\rm rot}^2 - \sigma_r^2 \left(\frac{\partial \ln \Sigma(r)}{\partial \ln R} + \frac{\partial \ln \sigma^2}{\partial \ln R} - \beta \right) + \frac{kT}{\mu m_{\rm H}} \left(\frac{\partial \ln \Sigma(r)}{\partial \ln R} + \frac{\partial \ln T}{\partial \ln R} \right)$$
$$V_c \equiv \left[GM(\langle r)/r \right]^{1/2}$$

$$\beta \equiv 1 - \sigma_{\phi}^2 / \sigma_r^2$$

galaxies-haloes mistmach

The Missing Satellites Problem

low number of satellites

THE ASTROPHYSICAL JOURNAL, 522:82–92, 1999 September 1 © 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A.

WHERE ARE THE MISSING GALACTIC SATELLITES?

ANATOLY KLYPIN, ANDREY V. KRAVTSOV, AND OCTAVIO VALENZUELA Astronomy Department, New Mexico State University, Box 30001, Department 4500, Las Cruces, NM 88003-0001

AND

FRANCISCO PRADA Instituto de Astronomia, Apartado Postal 877, 22900 Ensenada, Mexico Received 1999 January 18; accepted 1999 April 15

> THE ASTROPHYSICAL JOURNAL, 524:L19–L22, 1999 October 10 © 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A.

DARK MATTER SUBSTRUCTURE WITHIN GALACTIC HALOS

BEN MOORE, SEBASTIANO GHIGNA, AND FABIO GOVERNATO Department of Physics, Science Laboratories, South Road, University of Durham, Durham, England, DH1 3LE, UK; ben moore@durham.ac.uk, ssg@durham.ac.uk, fabio@antares.merate.mi.astro.it GEORGE LAKE, THOMAS QUINN, AND JOACHIM STADEL Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195-1580; lake@hermes.astro.washington.edu, trq@hermes.astro.washington.edu

AND

Paolo Tozzi

Osservatorio Astronomico di Roma, Via Frascati, 33, Monteporzio Catone, Rome, I-00040, Italy; paolo@pha.jhu.edu Received 1999 April 16; accepted 1999 August 2; published 1999 September 13

Quantifying the Missing Satellites Problem

Discrepancy of ~ 2 orders of magnitude between the number of satellites predicted by numerical simulations of galactic systems and the Local Group.

Possible Solutions

possible solutions (I)

Which physical process drive this?

Which physical process drive this?

inefficient atomic cooling

- minimum mass for atomic hydrogen cooling
- it corresponds to T=10⁴ K (Mvir ~10⁸ Msun)
- only $V_{vir} < 15 \text{ km/s}$

UV feedback

- photoevaporation of dwarf galaxies during the epoch of reionization
- heating of the intergalactic medium to ~1-2 10⁴ K
- suppress galaxy formation in halos with T_{vir}<1-2 10⁴ K
- This means V_{vir} <20 km/s at z=6 (M_{vir} < 10⁹ Msun)
- This may work for Ultra Faint Dwarfs

(Efstathiou 1992, Bullock et al. 2000, Benson et al. 2002, Bovill & Ricotti 2009, Sawala et al. 2016)

stellar feedback

- efficient in ejecting star-forming gas
- in heating cold and dense gas
- in preventing star formation on galaxy-scales
- in halos upto $M_{vir} < 10^{11} M_{sun}$ or $V_{vir} < 100 \text{ km/s}$

(Dekel & Silk 1986)

The Cusp-Core problem

A problem in the inner slope of DM profile (α)

(McGaugh et al. 2001, Marchesini et al. 2002, Simon et al. 2005, de Blok et al. 2008, Kuzio deNaray et al. 2008)

possible solution (II)

Feedback is the main suspect again...

- Feedback drives repetitive gas blowups
- It shakes the gravitational potential
- it induces gravitational heating in the central halo
- only if star formation is intense (Ultra-faint dwarfs remain cuspy)
- and if gravitational potential is not too deep

feedback creates cores above ultra-faint dwarfs

The Too-Big-to-Fail Problem

Classical Dwarfs are too dense

possible solutions (III)

- feedback
- interactions between satellites and the MW: tidal stripping, disk shocking, ram pressure stripping
- isolated field dwarfs

Planes of Satellites

possible solutions (IV)

- filamentary accretion within Λ CDM
- limited coverage in observations
- rotational supported motions?

Three take-home messages

- Missing Satellite Problem
- **ACDM** halos are too cuspy and dense in their centres compared with many observed galaxies
- Planes of Satellites

THANKS

Forth Tutorial Section