5. Simulations at the dwarf scale: from violent dwarfs at cosmic dawn and cosmic noon to quiet discs today

Daniel Ceverino

assistant professor at the Cosmic Dawn Center University of Copenhagen, Denmark The Universe as a time machine: focusing on dwarfs

- The LMC scale (M_s=a few 10^9 M_{\odot}) at three different z
- z=0: AGORA (Ceverino et al. 2017b)
- z=2: VELA (Ceverino, Primack & Dekel 2015)
- z=6: FirstLight: Simulations of galaxy formation during cosmic dawn (Ceverino, Glover & Klessen 2016; Ceverino, Klessen & Glover 2018, 2019)
- Cosmological zoom-in simulations with the AMR code: ART (Kravtsov et al 1997, Kravtsov 2003, Ceverino & Klypin 2009, Ceverino et al. 2014)

Disc-dominated dwarfs at z=0

Disc-dominated galaxy

sersic n=1.4

stellar light

The FIRE simulations using the same ICs produce a "fluffy dwarf spheroidal" (Hopkins et al. 2014)

40 kpc

matching local relations

Stellar mass vs Halo mass

Baryonic Tully-Fisher

 $\begin{array}{l} M_{H}{=}1.7 \ x \ 10^{11} \ M_{\odot} \\ M_{s}{=}3 \ x \ 10^{9} \ M_{\odot} \\ M_{G}{=}2 \ x \ 10^{9} \ M_{\odot} \end{array}$

Ceverino et al. 2017

Circular velocity profile: V_c=(GM/R)^{0.5}

 Diversity of rotation curves in dwarf galaxies

Disc Formation and Settling

Compaction & Disc Formation

face-on

edge-on

evolution of gas kinematics

Formation of a rotating disc

σ/V_{max}~0.1

Disc settling

Distribution of projected axis ratio

Most dwarfs at high-z are not discs or spheroids, but elongated galaxies

Prolate DM halo \rightarrow elongated galaxy

DM

VELA28

30 kpc

 $z \approx 2$ $R_{vir} = 70 \text{ kpc}$ $M_{vir} = 2 \ 10^{11} \text{ M}_{\odot}$ $M_{star} \approx \ 10^9 \text{ M}_{\odot}$

stars

See also Tomassetti+16, Zhang+18

Ceverino, Primack & Dekel 2015

8 pc reso. & m_{DM}=10⁴ М_☉

M_v=3 x 10¹⁰ M_☉ at z=5

Evolution of the Stellar-Halo mass relation

- Good comparison with the predictions from abundance matching (Behroozi & Silk 2016)
- higher normalization and a steeper slope at higher z
- That combination drives little evolution at low masses.

Ceverino, Klessen & Glover 2017

First Results

Overall good agreements with observations

Ceverino, Glover & Klessen 2017

Ceverino, Klessen & Glover 2018

Star-forming Sequence at z=5-15

Ceverino, Klessen & Glover 2018

all galaxies are bursty

Galaxies expend 70% of their time in SF bursts

Ceverino, Klessen & Glover 2018

Typical & Extreme SF bursts at z=6

100 Myr

de la como diato

Typical & Extreme SF bursts at z=6

SEDs

Ceverino, Klessen & Glover 2019

restframe UV properties

Dust attenuation?

High production efficiency of LyC photons

restframe UV properties

Evolution !

Colors and magnitudes

Star-forming main sequence

BPT diagrams

HOME NEWS ABOUT GALLERY CONTACT

FIRST LIGHT

SIMULATIONS OF FIRST GALAXIES IN THE EARLY UNIVERSE (redshift z=15 to z=5) by Daniel Ceverino

The FirstLight project aims to follow the formation of the first galaxies during Cosmic Dawn (z=5-15), by using the N-body+gas-dynamics code, ART with novel models of feedback and a resolution below 10 parsecs.

DATA RELEASE OF THE FIRSTLIGHT DATABASE:

This release includes the basic properties of the main galaxy progenitor of 290 zoom-in simulations (Ceverino, Klessen & Glover, 2018): virial mass and radius, stellar and gas mass of the galaxy and its SFR aproximately every 10 Myr.

Using this database you can build the star-formation histories of about 300 galaxies with stellar masses between 10^6 and 3 x 10^9 Msun. The evolution of the SFR in each galaxy is complex and diverse, characterized by bursts of star formation. Overall, first galaxies espend 70% of their time in these bursts. This diversity sets the mean and the mass-dependent scatter of the star-forming main sequence at z=5-15. More results can be found in Ceverino, Klessen & Glover, (2018).

DATABASE

How to use this database?

Make a querry

Advanced Tools

Stellar spectra using BPASS2.1_imf135_100

Three take-home messages

- AGORA: Formation and Settling a low-mass disc: V_{max}~100 kms at z~0
- VELA: Formation of elongated Galaxies
- FirstLight: dwarf starbursts during cosmic dawn

THANKS

Fifth Tutorial Section