Radiation from supernovae and neutron star mergers

Masaomi Tanaka (Tohoku University, Japan)

Goals of this lecture

Why do supernovae (SNe) emit huge luminosity?

- Why does emission from SNe evolve with time?
- What can we learn from observations of SNe?

Why do NS mergers emit electromagnetic emission?
What can we learn from observations of NS merger?

Lecture material

https://www.astr.tohoku.ac.jp/~masaomi.tanaka/sochi2019

Schedule

Wednesday
 Basic of radiation from supernovae - 1
 Basic of radiation from supernovae - 2
 Friday
 Lessons from supernova observations
 Neutron star mergers

* White board (~ half) Slides (~ half)

Basic of radiation from supernovae

1. Observations of supernovae

- 2. Power source of supernovae
- 3. Light curves of supernovae

1572 Tycho Brahe "Stella Nova"

1604 Johannes Kepler

"Astronomie Populaire" by Camille Flammarion (Paris, 1884)

Historical supernovae

Name	Location	Year	Magnitude
SN 185	Galactic	185	-8?
SN 1006	Galactic	1006	-9?
Crab	Galactic	1054	-4?
SN 1181	Galactic	1181	0
Tycho	Galactic	1572	-4
Kepler	Galactic	1604	-3
SN 1987A	LMC	1987	3

~ 1 supernova every 100-200 years

History of SN discovery

http://proftimobrien.com/2014/02/supernova-2014j-in-m82/

Spectroscopic classification

4 types of supernovae

Host galaxies of supernovae

Elliptical galaxy

NASA, Swift

Type la

Type la Type lb, lc, ll

ESO

-ES-

II, Ib, Ic: Young stars (massive stars) Ia: Old stars (low-mass stars)

Core-collapse SNe

Thermonuclear SNe

Progenitor

Elements

Massive stars Short lifetime

O, Mg, Ca, ... (progenitor star)

Low-mass stars (in binary) Long lifetime

> Si, Ca, Fe, ... (explosion)

Mass loss due to stellar wind

Line profile

"P-Cygni" Profile

Observer

Doppler effects

$$\lambda = \left(\frac{c-v}{c}\right)\lambda_0$$

$$\frac{v}{c} = \frac{(\lambda_0 - \lambda)}{\lambda_0}$$

Line profile

v/c = 163/6563
=>
v = 0.025 x c
~ 7,000 km/s

Q. How large is the kinetic energy?

 $E = \frac{1}{2}Mv^2$

Mass ~ 5 Msun

Msun = $2 \times 10^{33} g$

Velocity ~ 5000 km/s

Ekin = $1/2 \times Mass \times (Velocity)^2$ = $1/2 \times (5 \times 2 \times 10^{33} \text{ g}) \times (5 \times 10^8 \text{ cm/s})^2$ ~ 10^{51} erg

Summary: Observations of supernovae

Supernova observations

Modern observations discover
 > 1000 extragalactic SNe/yr

- Spectral classification
 - Core-collapse supernovae = Type II, Type Ib/Ic
 - Thermonuclear supernovae = Type Ia
- Supernova explosions
 - V ~ 5,000 10,000 km/s (Doppler shift)
 - Ekin ~10⁵¹ erg << Egrav (~ 10⁵³ erg)

Basic of radiation from supernovae

Observations of supernovae
 Power source of supernovae
 Light curves of supernovae

Light curve (brightness as a function of time)

Luminous! (decay of ⁵⁶Ni)

Type I - Has a peak - Ia > Ib, Ic

Type II - Has a plateau

Various types of explosive transients

What determines their luminosity and timescale?

56Ni

 $E_9 = \frac{1^+}{1.720}$

 $E_4 = 0.970$

 $E_1 = 0.158$

 $\mathbf{E}_0 = \mathbf{0}$

1.56 (14.0)

 $E_7 = \frac{0^+}{1.451}$

56**CO**

Nadyozhin 94

56Ni

\$

Sun

Adiabatic expansion

Supernovae

Supernova interacting with circumstellar material

Flux

Supernova interacting with circumstellar material

Type IIn SN - Brighter than Type II

- Longer than Type II but sometimes faster

- Large variation

Zhang+12

Stellar mass loss probed by Type IIn supernovae

Intensive mass loss just before the explosion

Summary: Power source of supernovae

• Erad ~ 10⁴⁹ erg

<< Ekin (10⁵¹ erg) << Egrav (10⁵³ erg)

Power source

- **1. Radioactivity (**⁵⁶Ni) Important in all the types Type Ia > Core-collapse
- 2. Shock heating
 - Important for large-radius star (Type II)
- **3. Interaction with CSM** Ekin => Eth (Type IIn)

Basic of radiation from supernovae

1. Observations of supernovae

- 2. Power source of supernovae
- 3. Light curves of supernovae

Light curves

Type I - Peak - L(Ia) > L(Ib, Ic)

Type II - plateau - L(Ia) > L(II)

Various types of explosive transients

What determines their luminosity and timescale?

Opacity in supernova ejecta (Type Ia SN, $\rho = 10^{-13}$ g cm⁻³)

Pinto & Eastman 2000

Light curves

10⁴² erg s⁻¹

Type la SNe eject more ⁵⁶Ni

Summary: Light curves of supernovae

Timescale of emission

- SN ejecta are initially optically thick
- Optical depth decreases with time
- Photons diffuse out from SN ejecta
- Source of opacity: bound-bound transitions and e-scattering
- Typical timescale t ~ κ^{1/2} Mej^{3/4} Ek^{-1/4}
 ~ κ^{1/2} Mej^{1/2} v^{-1/2}