Basics of stellar evolution theory II

Takashi Moriya National Astronomical Observatory of Japan This lecture is based on the following materials.

An Introduction to the Theory of Stellar Structure and Evolution (D. Prialnik, Cambridge University Press, 2009)

Stellar Structure and Evolution (R. Kippenhahn, A. Weigert, & A. Weiss, Springer, 2012)

Physics, Formation and Evolution of Rotating Stars (A. Maeder, Springer, 2009)

Stellar Evolution Physics (I. Iben, Cambridge University Press, 2012)

https://www.astro.ru.nl/~onnop/education/ stev_utrecht_notes/

Stellar evolution theory

 Based on physics summarized in the previous lecture, we consider how (massive) stars change themselves over time

- Evolution at the center
- Evolution at the surface

Evolution at the center of stars

Characterizing the (log T, log ρ) plane

 $\log \rho$

Ideal gas EoS vs degenerate EoS

Ideal gas EoS vs degenerate EoS

Degenerate EoS vs relativistic-degenerate EoS

Degenerate EoS vs relativistic-degenerate EoS

Relativistic-degenerate EoS vs ideal gas EoS

Relativistic-degenerate EoS vs ideal gas EoS

Ideal gas EoS vs radiation EoS

 $\log \rho$

Ideal gas EoS vs radiation EoS

Characterizing the (log T, log p) plane

Density and temperature at stellar center

Density and temperature evolution at stellar center

 $T_c \propto M^{2/3} \rho_c^{1/3}$

Density and temperature evolution at stellar center

Nuclear burning at stellar center

Unstable regions

Density and temperature at stellar center: summary

Density and temperature at stellar center: summary

Woosley et al. (2002)

Evolution seen from the surface of stars

Surface evolution

Surface evolution

Expansion of the envelope

Expansion of the envelope

"mirror principle"

Whenever a star has an *active shell-burning source*, the burning shell acts as a *mirror* between the core and the envelope. core contraction => envelope expansion core expansion => envelope contraction

Surface evolution

Kippenhahn diagram

Kippenhahn diagram

The final stellar structure

Mass loss

Mass loss from massive stars

Mass loss from massive stars

Smith (2014)

Mass loss from massive stars

Final mass of stars

Rotation

- Rotation induces extra mixing in stars
 - e.g., meridional circulation

♀ Convection
Not. mixing

Marchant et al. (2017)

Rotation

Rotation

Langer (2012)

Smartt (2015)

Many issues remain in stellar evolution theory

• even the main sequence is not understood!

Impossible supernova progenitors

Smartt (2015)

Summary

- Stellar evolution at center
 - the evolutionary path and fate is solely determined by mass
 - follows $T_c \propto M^{2/3} \rho_c^{1/3}$
- Stellar evolution at surface
 - mass loss is important for massive stars
- there is other important physics
 - e.g., rotation
- many unsolved problems
 - main-sequence widths
 - impossible supernova progenitors

