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Introduction

Nambu, Mandelstam, 't Hooft and Polyakov 1970's:
Confinement is a dual Meissner effect upon condensation of
monopoles.

Electric charges condense — magnetic

Abrikosov-Nielsen-Olesen flux tubes (strings) are formed —
monopoles are confined

monopole

Higgs phase
for charges i

anti-monopole




Nambu, Mandelstam, 't Hooft and Polyakov:

Dual Meissner effect:

Monopoles condense — electric Abrikosov-Nielsen-Olesen flux
tubes are formed — electric charges are confined

. charge

Higgs Phase for
monopoles

. anticharge

V(R)=TR, T — string tension



No progress for many years...

DEAD
END

QCD:
» No monopoles
» No confining strings
» Strong coupling



Breakthrough discovery come from
supersymmetry.

Seiberg and Witten 1994 : Exact solution of

N = 2 supersymmetric QCD.

Supersymmetric gauge theories can be considered as a
“theoretical laboratory” to develop insights in the dynamics of
non-Abelian gauge theories.

Supersymmetric theories are "simplier” then real-world QCD
Many aspects are determined by exact solutions.



Example: A = 2 Yang-Mills theory with gauge group SU(2)
The field content:

SU(2) gauge field A?,

+ adjoint complex scalar = scalar gluon a?,a=1,2,3
+ fermions

Like Georgi-Glashow model

Adjoint scalar develops condensate — 't Hooft-Polyakov
monopoles



Seiberg and Witten 1994 : Confinement in the monopole
vacuum of N =2 QCD
Cascade gauge symmetry breaking:

» SU(N)— U(1)V-? condensate of adjoint scalars
Example: SU(2)— U(1)
» U()Vt =0 condensate of monopoles

At the last stage Abelian Abrikosov-Nielsen-Olesen flux tubes
are formed.
Abelian confinement



In search for non-Abelian confinement non-Abelian strings
were found in A/ =2 U(N) QCD

Hanany, Tong 2003

Auzzi, Bolognesi, Evslin, Konishi, Yung 2003

Shifman Yung 2004

Hanany Tong 2004

Non-Abelian string : Orientational zero modes
Rotation of color flux inside SU(N).

s



Abrikosov-Nielsen-Olesen strings

1. Higgs mechanism in Abelian Higgs model

1
Swu = [ dtx{ gz Fa + 19,0l = Alla? - €2

where V,,qg = (0, — incA,) q.
U(1) gauge group is broken, < g >= /£, gauge field becomes

massive

Mg = \/Egne\/g
The mass of the Higgs field is

my = 2\/X\/E

Gauge phase is eaten
Number of degrees of freedom: Before After
242=4 3+1=4



2. Abrikosov-Nielsen-Olesen vortices

Consider string-like solutions of equations of motion which
depend only on x;, i = 1,2

m(U(1)) =Z

At r — oo we have

. n
qnr~ \/gema, A ~ n_ O
e

where n is integer and r, « are polar coordinates in (xi, x)
plane.

1
Viq ~ ind;oc — inel&-a ~ o(-), /d2x\V,-q]2 = finite
r

e

2 1
P = /d2xF3*:/dx,A _—/dx,aa_ i F;:Ea,-jF,-j.

e

Topological classes of fields A;, g. Magnetic flux is quantized.



Ansatz for the string solution is
- 1
q=o(r)e"™, A= — i [n— f(r)]
Ne

with boudary conditions

f(0) = n, f(c0) =0
1 2 [ 2m
Fi=——f(r), o= /d2x Fi=—" drf(r)= ”n(o)
e e 0 e

Singular gauge U = e~

q = o(r), Ai:_lai@f(r)



Equations of motion
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ANO string profile functions

Here s = ¢//€.

At r — oo
fNefmgr, (gb_\/g)N\/gemer

Superconductivity
Type | my < mg, Type Il my > mg, BPS my = my,



BPS ANO strings in A/ = 2 supersymmetric QED
1. N =2 QED

Field content:

Gauge multiplet A,,,, a 4+ fermions A\; and )\,
Matter multiplet g” (charge =+1) , §a (charge =-1)
+ fermions 2, up, a0 =1,2, A=1, ..., Ny

The bosonic part of the action

S= /d4 {__F2 —2|8“a|2 + vuC_IAvqu + ?M&AVHE’A

—n§7 (Ia" = 1dal* = )" — 2n28” |daq|"

1
3R + 1) 2 VEma[ '}

V,=0,—inA,, ?uzﬁu—i—ineAu.



Consider the case Ny = 1.
The vacuum is given by

(a) = —nelﬁm, (@)= VE (G =0,

The spectrum:
One real component of field g is eaten up by the Higgs
mechanism to become the third components of the massive
photon. Three components of the massive photon, one
remaining component of g and four real components of the
fields g and a
3+14+2+2=8
A, qa §
form one long N = 2 multiplet (8 boson states + 8 fermion
states), with mass

mi =2n’ g ¢.



2. BPS ANO string solution
Look for the string solution using the ansatz

1
nev'2

Then the action becomes

2
S = /d4 {——F2 +]VMq|2—7n (Iq)* - )2}

Here my = mg. Assume again that A; and q fields depend
only on x;, i = 1,2 and write for the string tension the
Bogomolny representation

T = /d2x{{\/_%g/:§k+%”e<|q|2_g)r

+ |V1q+iV2q|2+ne£F§“},

m,  §=0



Bogomolny representation ensures that for the given winding
number n the string solution (minimum of energy) has tension
which is determined by the topological charge (magnetic flux)

T,=2mn&
and satisfies the first order equations
F5 +gne (g =€) =0,
(Vi+iVa)g=0.

For the elementary n = 1 string the solution can be found
using the standard ansatz

a() = B e, Ax) = niea,-a 1 £(r)]

First order equations take the form

d
_7_+neg (¢2—§):07 rd—ib—fgb:o



Boundary conditions

$(0) =0,  (0) =5,
1, f(oo)=0

The profile functions for ANO BPS string can be found
numerically




N = 2 supersymmetric QCD in four dimensions

N =2 QCD with gauge group U(N) = SU(N) x U(1) and
Ny = N flavors of fundamental matter — quarks

+

Fayet-lliopoulos term of U(1) factor
The bosonic part of the action

1 5 1 5 1 212 1 5
5 = /d4 [4g2(F ) +Q(FMV) +g_§‘Dua’ +g_12‘aua|

IV, + |V, 8 + V(" Ga, 47 a)

Here .
/ ‘Aa a
Vuzé?u—EAu—/AuT .



The potential is

V(qA7 dAa aa7 a)

+

2 .
g_2 % f'abcébac + GA Tan o aA T2
2 \&

2 -
%1 (Gag” — Gad” — /Vf)2

2
262 |§aT°¢"|" + % |Gag”|”

N
1 2
5 E {‘(a+\/§mA+2T"’aa)qA’

A=1

_ 12
’(a+\/§mA+2T"’aa)aA‘ } :

aA

;



Vacuum

my
1 1
(53—1—7_33"):——
2\ o
For special choice
my=my=...= My

U(N) gauge group is unbroken.

(@) =0,



» Color-flavor locking
Both gauge U(N) and flavor SU(N) are broken, however
diagonal SU(N)c.f is unbroken

(q) = Ulq)U™*
(a) — U<a>U‘1

» Higgs phase =—> Gluons are massive

N
Msy(n) = 82 \/g, Mmy) = 81 55

Scalars a? and a have the same masses. Quarks are
combined with gauge bosons in long
N = 2 supermultiplets.
(3 +1 +2 +2 )(N? — 1)= 8(N> — 1), msy(n)
A, q g a
3 +1 + 2 +2 =8, myqy



The theory is at weak coupling if we take

VES N
82 VE

= Nlog — 1
20 BN T



Ly strings

We look for string solutions which depend only on x;, i = 1,2
Example in U(2) = U(1) x SU(2)
Abrikosov-Nielsen-Olesen (ANO) string:

1

ia 10
q’r—)oo ~ ge

5 A,‘N2a,'04, Al =0
01

Magnetic U(1) flux of ANO string is

¢:/d2XF12:47T



Zy string:

0
1

eioc

) s A,' ~ (9,-04, A? ~ 8;04
Magnetic U(1) flux of Z; string is

d>:/d2xF12:27r

Here r and « are polar coordinates in the plane orthogonal to
the string axis



We set a? and a fields to their VEV's and put § =0
The action of the model becomes

Y U ST LI SN
> /dx{ 4g3 (Fi) ag7 )
2 2
bV 2 @r) - (e - N’

Now we can write Bogomolny representation

- Je{ae el

1 2
F* 2
- {\/_1 2\/_(|q| )]
+ }quA—l—iVQqA‘ +E€F§k},

F;: F12 and F3*a: Fla2,



First order equations

2
Fi+ £ (o = we) =o.
F?+ & (aaT°q") =0,

(Vi+iV2)g* =0.

One can combine the Zy center of SU(N) with the elements
exp(2mik/N) €U(1) to get a topologically stable string
solution possessing both windings, in SU(N) and U(1).

m (SU(N) x U(1)/Zy) #0.

This nontrivial topology amounts to selecting just one element
of g, say, g, or g*, etc, and make it wind

Gstring = \/Ediag(l, 1,..., eia), r— oo.



Elementary Zy string solution

¢2(r) O 0
7= 0 P2(r) 0 ’
0 0 ey(r)
1 0 0
AISU(N) :% O ..... 1 0 (0,0) [=1 + fua(r)].
00 .. ~(N—1)

2
A= 5 0) L= (1)



Magnetic U(1) flux of this Zy string is

4T
/d2X F12 = W

First order equations

d 1
oy 010 = 5 (F() + (N = 1)fua(r)) 6n(r) = 0.
d 1
r gy 02(0) = 3 (F(0) = fun() 2(r) = 0,
—% %f(r) + ng/v [(N = 1)¢a(r)* + ¢1(r)* — NE] =0,
1d g§ 2 2] _
— EfNA(r) +5 [01(r)? — 2(r)?] = 0.

Bogomolny representation gives tension of the elementary Zy

string
T =27¢



Boundary conditions
$1(0) =0,
fna(0) =1, f(0)=1,
at r =0, and
¢1(OO) = \/Ea ¢2(OO) = \/57
fNA(OO) = 0, f(OO) = O

at r = 0.



Profile functions of the string (for N = 2)




Non-Abelian strings

Vacuum is invariant with respect to SU(N)c. ¢ rotation while
the solution is not. Therefore applying SU(N)cf rotation we
get the infinite family of solutions.

1. Go to the singular gauge. 2. Apply SU(N)c, F rotation.

¢2(f) 0 0
oy =
7 0 ... ¢or) O
0 0 .. ¢
1 0 0
1
AT ~U o 1 0 U™ (icx) fua(r) ,
0 0 —(N-1)
A = —% (Ojx) £(r)



Zy solution breaks SU(N)cr down to SU(N — 1) x U(1)
Thus the orientational moduli space is
SU(N)
SU(N — 1) x U(1)

~ CP(N — 1)

Matrix U can be parametrized

1 .. 0 0 :
1 P R
w1 o 1 0 o B A
0 0 —(N —1) ,

with



The number of parameters
N?—1—(N—-1)>=2(N-1)

Then the solution for the non-Abelian string takes the form

1 1
N[(N—1)¢2+¢1]+(¢1—¢2) (n n _N>’

SU(N L1 Xj
Ai() = (”‘” N 5ijr_éfNA(r)a

2 X
A = Néijr—éf(f),



CP(N) model on the string

String moduli: xp;, i =1,2and n/, I =1,...,N

Make them t, z-dependent. Translational moduli decouple.
Consider orientational moduli.

Substitute the string solution into 4D action.

We have to switch on gauge components Ay, k = 0,3. Use
the ansatz

AiU(N) = —i[0kn -n*—n - Okn* —2n - n*(n*Okn)] p(r)
This gives
X
Flf,iU(N) = (Okn 0" +n- On*) g5 r_J2 fna [1 — p(r)]

+ i[okn -n*—n- On* —2n - n*(n" )]—J

To have a finite contribution from the term Tr F2 in the action
we impose the constraint

p(0) =1 p(0) =0



Combining with contribution from quark kinetic terms we get
2D CP(N — 1) model

S+ — /dt dz {(Ok n* Ok n) + (n* Ok n)*}

with inverse coupling (3

where

= rdr{(%pm)Q b o (1= )

+ G2 @+ +a-Ae-or)}



Minimizing with respect to p we get second order equation for

2 1d 1 82 5 o & 2
The solution is
P = _ﬂ
¢2
Then 4
=1, ==
85

The two-dimensional coupling is determined by the
four-dimensional non-Abelian coupling.



The two-dimensional coupling is determined by the
four-dimensional non-Abelian coupling. This relation is
obtained at the classical level. In quantum theory both
couplings run. What is the scale where this relation imposed?
The two-dimensional CP(N — 1) model is an effective
low-energy theory appropriate for the description of internal
string dynamics at low energies, lower than the inverse
thickness of the string which is given by the masses of the
gauge/quark multiplets

Mmsyn)y = &2 \/E

Thus, the parameter msy(n) plays the role of a physical
ultraviolet (UV) cutoff of the world sheet sigma model. This is
the scale at which the relation beween couplings holds. Below
this scale, the coupling 5 runs according to its
two-dimensional renormalization-group flow



8 2
2nf = N In o il og —2UM)

- g5(¢) Asu(n)

Equating two couplings we get

Ns = Nsu(w)

CP(N — 1) model is a low energy effective theory. There are
infinite series of higher derivative corrections in powers of

0

Msy(n)

to the action of CP(N — 1) model.



Example in U(2)

CP(1) = 0(3)

We have two dimensional O(3) sigma model living on the
string world sheet.

5(1+1) = § /dt dz (8/( §)27 §2 =1

where

S5 = —n"71n, a=123
S

Pl



Gauge theory formulation of CP(N — 1) model
Witten 1979:

CP(N — 1) == Higgs branch of U(1) gauge theory
The bosonic part of the action is

1 1 1
Scpin-1) = /d2X {|Vk”/|2 - 4_e2Fk2I + ?|6k0|2 + EDZ

— 2ol + D(In'[2 - 8) }
Condition
|nl|2 =7,
imposed in the limit 2 — oo
Gauge field can be eliminated:
i

Ak = — 2— (ﬁ,akn/ — 8kﬁ/ nl), c=20

Number of degrees of freedom = 2N —1—1=2(N — 1)
Our string is BPS = A = (2,2) supersymmetric CP(N — 1)
model



Large N solution of CP(N — 1) model

Witten 1979

Solved at large N both A/ = (2,2) and non-SUSY CP(N — 1)
models.

At large N we integrate out fields n' and their fermion
superpartners

[det (=02 — D +2|0|?)] " [det (-2 +2|0]?)]"

We get
N (=D +2[o[?) |In M. +1| = 2[o |In M5V+1
in 7 —D +2[o]? R
The scale A, is defined by writing the bare coupling as
N M2,
fo= gz In e

in the term — D/, in the action.



We get

N —D +2|o|?
_ 2 2
Vr = /dxﬂ{— (=D +2/of") log ——=—- =D
2|0
+ 2|of log % } ,

Minimizing this potential we get equations

N —D + 2|5 |? )
20ien = — log ———— =10 =0
g 4r 8 A2 — (|n"|)
—D + 2|o?
log ————— =0
% T2
Solution:
2]a|2 = /\3

D:



The model has U(1) axial symmetry which is broken by the
chiral anomaly down to discrete subgroup Zy (Witten 1979).
The field o transforms under this symmetry as

a—>e2LNk"a, k=1,...N—1.

Z>n symmetry is spontaneously broken by the condensation of
o down to 2o,

There are N strictly degenerate vacua



dh
N

Classically n’ develop VEV, (|n|?) = 8

There are 2(N — 1) massless Goldstone states.

In quantum theory this does not happen

SU(N)c.F global symmetry is unbroken

Mass gap ~ Acp; no massless states ({|n|?) = 0)

Kinks (domain walls) interpolating between different vacua.
Kink masses are nonzero

Kink sizes are stabilized in quantum regime, ~ A}




Unequal quark masses
N quantum vacua of CP(N — 1) model and N Z strings?
Introduce quark mass differences, This breaks SU(N)c.r
down to U(1)N-1
Consider U(2) N =2 QCD for simplicity. The string solution

reduces to
P2(r) 0 > —1
= U U
9 ( 0 ¢u(r) ’
a a Xj
AI-(X) = —5 e,jr—éfNA(r),

Ai(x) = 5ij%f(r), S?=—n"1n.

At large r the field a? tends to its VEV aligned along the third
axis in the color space,

Am=m; — my,

(@°) = _W7



The ansatz for the adjoint scalar
Am
a=- 6Bb+S5°S(1—b
Sl (- b)

with boundary conditions
b(co) =1, b(0)=0

This gives the potential

Am?
Ver(y) ZV/C/QX > (1-53),

where
o [ d 21,
v o= g_22/0 I’df{(ab(l’)) +ﬁfNAb+

GG )+ -}



Minimization with respect to b(r) gives

Finaly we get

p Lo ca
Scp(l) = E / d2X {E (8k5 )2 + 5




For arbitrary N in the GLSM description we have
2 12 1 2
SCP(N—l) = d“x {Van ‘ — Je 2Fa6 2 ’aaO"
- ‘\/_0+m,’ |n” ] 2 5)2}+fermions
Classically at large mass differences N vacua are given by

(ny=¢6"  (V2o)=-my, k=1, N

Zy strings.



Confined monopoles

Higgs phase for quarks = confinement of monopoles
Elementary monopoles — junctions of two different strings
Example in U(2)

monopole

U(l)

string flux = [dx; A; =27 n - n*, nl = §h



monopole flux
= string flux,, - string flux,1=4m x diag%{..., 1,-1, ..

Iml>>g" |

§—1/2

Almost free monopole

A<<\m\<<E_, .

Confined monopole,
quasiclassical regime Confined monopole,
highly quantum regime




In 2D CP(N — 1) model on the string we have
N vacua = N Z) strings
and kinks interpolating between these vacua

Kinks = confined monopoles

monopole

string 1 string 2

Vi »

vacuum 1 vacuum 2
kink



The first-order equations for the string junction

String junction is 1/4-BPS
Consider U(N = 2) theory. Acp < |Am| < /€
Bogomolny representation

1 & 1 2
E = d3x Fia+ -2 (gar?q”) + —D aa]
/ {[ﬁgz AV AR

1 2
+ Fr+ \qy —2¢) + 03a]
[\/ig& } 2\/_( )
+ 1 1(F*‘Q’JF'F*")JF(D +'D)a"’2
— | —= ) I
g v2 ! ? P

+ ’Vl qA + ng qA|2

1
+ ‘%q“ + 7 (aaTa +a+ f2mA> q*

2
} + Esurface



Surface terms

Esurface :f/d3XF; - \/§< 2> /dsn F:a

a
8>

First order equations
Fi? + iF3° +V2(Dy + iDy)a” = 0,
2
Fi+ % (|a"* - 2¢) + v20sa = 0,

2
F?:ka—l— g?z (qATaC]A> —|—\/§D3aa :O,

1
Vsq? = -7 (aaTa +a+ \/EmA) .

(V1 +iVy)g* =0.



Ansatz for solution: String solution with z-dependence given

by function 5%(z)
5?(—o00) =(0,0,1), 5%(c0) =(0,0,-1)

First order equations are satisfied if
035 = Am (633 — 5353) , Am=m; — my

This equation is the first order equation for kink in O(3)

sigma model
E= g/dz {|azsa — Am (6% - 5°5%) \2 - 2Am8253}
4
Mgk = 3 Am, My = —7; Am
&>
Since 4
I My = Mignk



2D-4D correspondence

Kinks = confined monopoles
N = (2,2) model :

monopole
string 1 string 2 4D
vacuum 1 vacuum 2 2D
kink

kink __ monopole
M =M

independent on &.



Kink masses
Mp"S =2 Wep(op) = Wep(a))|,  1,I'=1,..,N

Compare with monopole masses

Q ]{ dAsw

Mmonopole -
27TI By

n )

M/I/I/lonopole _ M};,mk, /7 /= 17 . N

Dorey 1998

Shifman Yung 2004
Hanany Tong 2004



Example in U(2)
U(2) gauge theory with Ny = 2
Exact formula for the kink mass

1 Am 4 /Am? 1 4R2
Amin 2TE VAN E NG o A ane, V)
2 Am — /Am? + 472,

where Am=m; — my

kink
Mr:N




Confined monopoles = kinks
are stabilized by quantum (non-perturbative)
effects in CP(N — 1) model on the string
worldsheet

Consider non-Abelian regime (ma — mg) — 0
Classical picture
4W(m@o+1 - méo)

MM: 5 —0
8>

monopole size ~ Am™! — oo
Classically monopole disappear



Quantum picture
SU(N)c.F global symmetry is unbroken
Mass gap ~ Acp no massless states ({(|n|?) = 0)

Mmonopole - Mkink ~ /\CP
3 -1
monopole size ~ Ap

/\'1

‘ > ¥

—a—

E-l/2



Physical picture of monopole confinement

Monopole-antimonopole meson.

Witten 1989

kink ~ n' at strong coupling

Monopole (anti-monopole) = kink (anti-kink) is in the
fundamental (anti-fundamental) representation of global

"flavor” SU(N) c.r



Baryons

(DSU(N) _ /d2X F;SU(N) — o (n ont— %) 7 n/ — 5//0

SU(N
Zq)/o M=o
lo

Therefore N different strings can form a closed configuration

(S



Instead-of-confinement phase

Meson

Constituent quark = monopole

At weak coupling these mesons are heavy and decay into
screened quarks and gluons
What about strong coupling?



Curves (walls) of marginal stability in 2D
Example in CP(1)

Ze = mpT +iAmgq, Mgy = [Zd7)|
T is the topologikal charge T =0, £1,
q is the global charge; SU(2)cir — U(1), g = £3,+1, ...
Decay 3— 142,
Ts=Ti+ Ty, 93 =q1+ G, Li=04+ 24
Curve of marginal stabilility

mp
Re—— =0
eAm
In particular, perturbative state with T3 = 0, g3 = 1 decay at
kink T1 =1, 1 = 1 and antikink T, = —1, g, = 1 at
Z

ReL —
eAm 0



Curves (walls) of marginal stability

B:Reﬁ+i922—D, 218 = 2log (u)
T

Acp

two kinks \ n-states

—T

) Re B



Weak coupling

perturbative state

20—Q—

Adj

» QO

quark or gluon

Strong coupling

kink  anti-kink

monopole

anti-monopole



Question: Does these monopole-antimonopole mesons
look like mesons in QCD?

» Correct flavor quantum numbers (adjoint + singlet)

» Lie on Regge tragectories

Instead-of-confinement phase is a new phase of asymptotically
free non-Abelian gauge theories
besides Higgs and confinement phases known previously

Looks very close to what we observe in the real-world QCD
constituent quark = monopole



From non-Abelian vortices to critical superstrings

S T

Shifman and Yung, 2015 Idea:

Non-Abelian vortex string has more moduli then
Abrikosov-Nielsen-Olesen (ANO) vortex string.

It has translational + orientaional and size moduli: X,SO)(U, T)
and n'(o,7), p*(o,7)

We can fulfill the criticality condition: 4"‘6: ].0

» The solitonic non-Abelian vortex have six orientational
and size moduli, which, together with four translational
moduli, form a ten-dimensional space (N =2, Nf = 4).

» For Nf = 2N 2D world sheet theory on the string is
conformal



For U(N = 2) gauge group and Ny = 2 the world sheet theory
is 2D O(3) sigma model, O(3) = CP(1)

For N =2 and Ny = 4 the world sheet theory is weighted
CP(2,2) model.

The target space of the weighted CP(2,2) model is a
non-compact Calabi-Yau manifold studied by Candelas, Witten
and Vafa, namely

conifold.

Sy



Our goal:
Study states of closed string propagating on

Ry X Ye, Ys = conifold

and interpret them as hadrons in 4D N = 2 QCD.



Spectrum of spin-0 and spin-2 states as a function of the
baryonic charge. Closed and open circles denote spin-0 and
spin-2 states, respectively.

M2 /sn T

+5
o +4 o

+3

° +2 °
o +1 o

1 1 1 ® 0 ® 1 1 1 QB
8 -6 -4 =2 2 4 6 8




Conclusions

>

v

Worldsheet internal dynamics of non-Abelian string in
U(N) gauge theory with Ny = N flavors is described by
CP(N — 1) model

Non-Abelian confined monopole = CP(N — 1) kink

2D-4D correspondence: exact BPS spectrum in quark
vacuum of A/ = 2 4D Seiberg-Witten theory coincides
with BPS spectrum of ' = (2,2) 2D CP(N — 1) model

In quark vacuum we have

" Instead-of-confinement” phase

Higgs-screened quarks and gauge bosons evolve into
monopole-antimonopole stringy mesons.

“Instead-of-confinement” phase is rather close to what we
observe in the real-world QCD.

For N = 2, Nf = 4 non-Abelian vortex behaves as a
critical superstring



