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Pulsed jetting, by Funakoshi et al. (2007):

(a) A schematic of the vesicle formation method. 

(b) A sequence of images of vesicle formation 

captured by a high-speed camera.

Conclusion
We developed a reliable algorithm for modeling the nonlinear dynamics of closed 
axially symmetric vesicles. We demonstrated relaxation dynamics to previously known 
stationary shapes. Critical parameters of bifurcation points were obtained for 
flattened vesicles. Asymptotic shape and equilibrium parameters for elongated vesicles 
were derived. The "pearling instability" under the action of tensile forces applied to 
the edges of the vesicle was considered;force critical values were obtained. 
We simulated the development of instability at a supercritical force value in a 
nonlinear regime with "pearls" formation.
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Prolate vesicles have asymptotic shape: tube with universal edges:
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It can be determined as solution of force balance equation,where equlubrium pressure 

and surface tension can be found using balance far away from edge and scale invariance of Helfric energy.
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Membrane energies

Use Green function of Stocks equation to determine velocity,

Integration along the polar angle was carried out analytically.

∇ v = 0⟂ ⟹

H = +
1

R1

1

R2

K =
1

R1

1

R2

Stokes flow, surface forces

Energies are scaled by , surface tension  by , velocity by 

, time by , where  - appropriate lenght scale.
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Flattened branch on schematic bifurcation diagram
V =

V / 4𝜋 / 3

S / 4𝜋

( )

( )3/2

Supercritical Pitchfork Bifurcation

Normal spectrum

V ≈ 0.51ob

Conservation of volume and surface area, thus describing by reduced volume

V ≈ 0.66sto

v = ≈ 𝛿x + 𝛽
d 𝛿x

dt

( ) 2

𝛿x = ±eq -𝛽

∂ v = 2𝛿x ±2x → -𝛽

Saddle-Node Bifurcation Softest mode

|
| ≈

172

𝜆 max

𝛿V

V

First order phase transition:

F = Fsto obl

V ≈ 0.59c

V

Introduction
Vesicles consisting of a two-layer membrane of amphiphilic lipid molecules 

are surprisingly flexible and at the same time slightly compressible surfaces. 

We study the evolution of vesicle shapes over time under various conditions. 

Our analysis of bilayer dynamics is based on a hydrodynamic approach, 

which treats a bilayer as an infinitely thin fluid layer on which shape-

dependent forces applied to the surrounding viscous liquid are concentrated. 

The starting point of such consideration is the Helfrich energy [W.Helfrich, 

Z.Naturforsch (1973)]. Although we consider flows with low Reynolds 

numbers, which are governed by a linear hydrodynamic equation, the shape 

of the vesicle undergoes significant changes over time. This results in a 

highly nonlinear system of equations, necessitating the use of numerical 

simulation techniques to model the process. At first, we investigated the 

relaxation dynamics of vesicles. Specifically, normal modes were found, 

including the vicinity of bifurcation points. The bilayer is a "soft" object due 

to its small surface tension, and its shape can be easily deformed by external 

influences. In particular we model "pearling instability", induced by 

elongated forces, applied to the edges of prolate vesicles. We are also 

interested in processes in which a part of the membrane detaches from the 

main structure forming a vesicle. This kind of processes is important from 

biological point of view.

Tubular vesicle under pearling in elongation flow

Kantsler V., Segre E., Steinberg V. (2008)
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