New viable models of inflation and PBH formation

Inflationary dynamics

The action for canonical single-field models of inflation reads

$$S = \int d^4x \sqrt{-g} \left(\frac{1}{2} R - \frac{1}{2} \left(\partial_\mu \phi \right)^2 - V(\phi) \right) , \quad c = \hbar = M_{\text{Pl}} = 1 , \qquad (1)$$

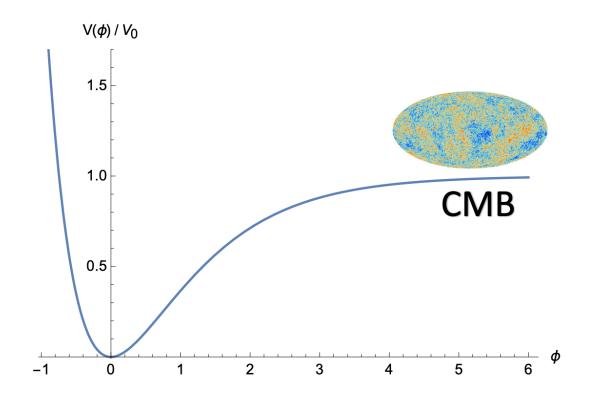
where ϕ is the inflaton field, and $V(\phi)$ is its potential. The Hubble rate, $H \equiv \dot{a}/a$, and ϕ satisfy the equations

$$\ddot{\phi} + 3H\dot{\phi} + V_{\phi} = 0 \; , \quad 3H^2 = \frac{1}{2}\dot{\phi}^2 + V(\phi) \; ,$$
 (2)

and the first and the second Hubble flow parameters are defined by

$$\epsilon \equiv -\frac{\dot{H}}{H^2} = \frac{1}{2} \frac{\dot{\phi}^2}{H^2} , \quad \eta \equiv \frac{\dot{\epsilon}}{H \epsilon} .$$
(3)

Inflationary dynamics I



slow-roll

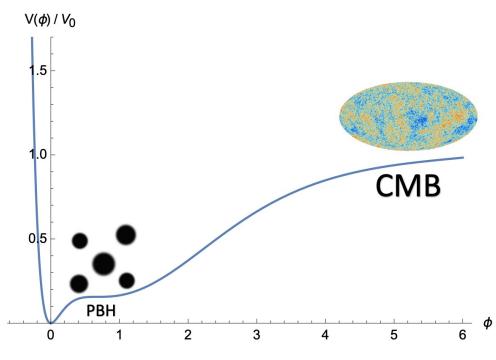
$$|\ddot{\phi}| \ll 3H|\dot{\phi}|$$
 $3H\dot{\phi} + V_{\phi} \simeq 0$ $3H^2 \simeq V$

$$\epsilon, |\eta| \ll 1$$

Inflationary dynamics II

ultra-slow-roll

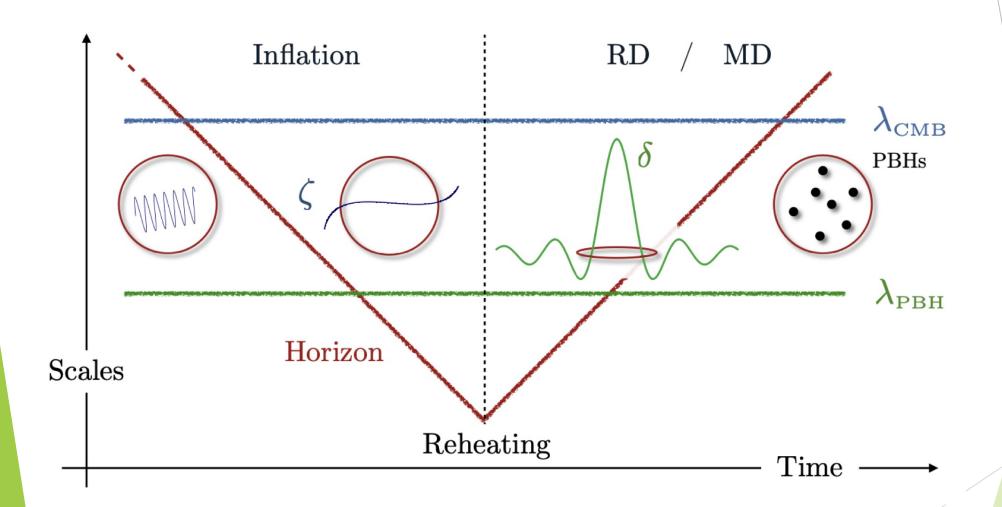
$$V_{\phi} \simeq 0$$
 $\ddot{\phi} + 3H\dot{\phi} \simeq 0$
 $3H^2 \simeq V$
 $\dot{\phi} \propto a^{-3}$
 $\epsilon \propto a^{-6}$, $\eta \simeq -6$



slow-roll

$$|\ddot{\phi}| \ll 3H|\dot{\phi}|$$
 $3H\dot{\phi} + V_{\phi} \simeq 0$ $3H^2 \simeq V$ $\epsilon, |\eta| \ll 1$

The curvature perturbation in the comoving gauge, $\zeta_k(t)$, can be expressed in terms of the Mukhanov–Sasaki variable, v_k , as $\zeta_k \equiv v_k/z$, where $z \equiv a\dot{\phi}/H$. Thus, $\zeta_k \propto a^3$.



Our model

The basic α -attractor models are divided into two types depending upon the global shape of the inflaton scalar potential,

E-type:
$$V \sim \left(1 - \exp\left(-\sqrt{\frac{2}{3\alpha}} \frac{\phi}{M_{\rm Pl}}\right)\right)^2$$
, and T-type: $V \sim \tanh^2 \frac{\phi/M_{\rm Pl}}{\sqrt{6\alpha}}$. (4)

The E-type potential can be modified to include PBH production [DF, Ketov, 2023] as

$$V(\phi) = \frac{3}{4} M^2 M_{\rm Pl}^2 \left[1 - y - \theta y^{-2} + y^2 (\beta - \gamma y) \right]^2, \quad y = \exp\left(-\sqrt{\frac{2}{3\alpha}} \phi / M_{\rm Pl}\right). \quad (5)$$

This potential can be rewritten in terms of the new dimensionless parameters

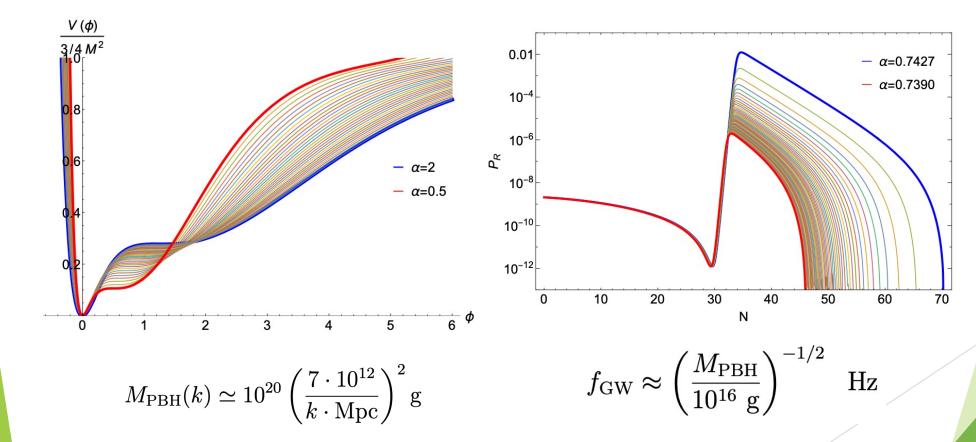
$$\beta = \frac{\exp\left(\sqrt{\frac{2}{3\alpha}}\phi_i\right)}{1 - \sigma^2} \quad \text{and} \quad \gamma = \frac{\exp\left(2\sqrt{\frac{2}{3\alpha}}\phi_i\right)}{3(1 - \sigma^2)} \ . \tag{6}$$

Two extrema are symmetrically located around the inflection point y_i as $y_{\mathrm{ext}}^{\pm} = y_i \, (1 \pm \sigma)$.

The power spectrum of scalar perturbations in the slow-roll approximation is

$$\mathcal{P}_R = \frac{H^2}{8\pi^2 \epsilon} \ . \tag{7}$$

It is of primary interest when calculating the observable predictions of an inflation model.



Reconstruction of inflation potential from GW signal

The present GW energy density computed in the second order is given by

$$\frac{\Omega_{\rm GW}(k)}{\Omega_r} = \frac{c_g}{72} \int_{-\frac{1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}} d \, d \int_{\frac{1}{\sqrt{3}}}^{\infty} d \, s \left[\frac{\left(s^2 - \frac{1}{3}\right) \left(d^2 - \frac{1}{3}\right)}{s^2 + d^2} \right]^2 \mathcal{P}_{\zeta}(kx) \, \mathcal{P}_{\zeta}(ky) \left(I_c^2 + I_s^2\right) \,,$$

where $x=\frac{\sqrt{3}}{2}(s+d)$, and $y=\frac{\sqrt{3}}{2}(s-d)$, and the functions I_c and I_s are given by

$$I_{s} = -36 \frac{s^{2} + d^{2} - 2}{\left(s^{2} - d^{2}\right)^{2}} \left[\frac{s^{2} + d^{2} - 2}{s^{2} - d^{2}} \log \left| \frac{d^{2} - 1}{s^{2} - 1} \right| + 2 \right], \ I_{c} = -36 \pi \frac{\left(s^{2} + d^{2} - 2\right)^{2}}{\left(s^{2} - d^{2}\right)^{3}} \theta(s - 1),$$

see [Espinosa, Racco, Riotto, 2018], and [Kohri & Terada, 2018].

The procedure of reconstruction is ambiguous. Nevertheless, it is possible to systematically identify the power spectra corresponding to a specific GW energy density curve [DF, Kühnel, Stamou, 2024], [LISA Cosmology Working Group, 2025].

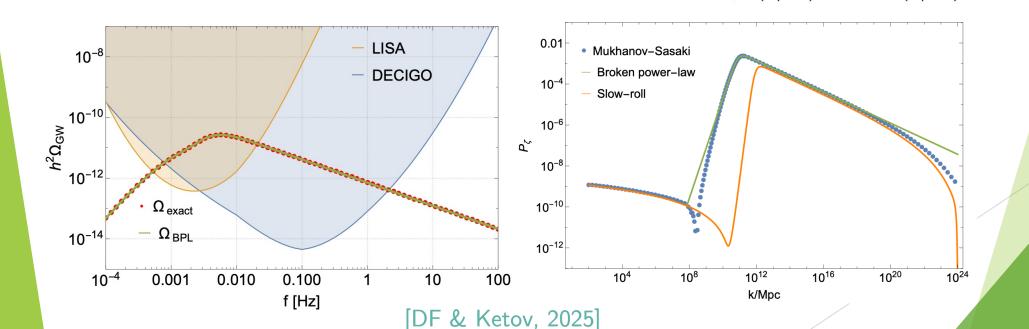
Reconstruction of scalar potential from GW signal

A curvature perturbation during inflation, $\zeta_k(N)$, can be expressed in terms of v_k as $\zeta_k \equiv v_k/z$, where $z \equiv a \cdot \phi'$. The variable v_k obeys the Mukhanov-Sasaki (MS) equation

$$v_k'' + (1 - \epsilon) v_k' + \left[\frac{k^2}{a^2 H^2} + (1 + \eta/2)(\epsilon - \eta/2 - 2) - \eta'/2 \right] v_k = 0 \quad , \quad \mathcal{P}_{\zeta}(k) = \frac{k^3}{2\pi^2} \left| \frac{v_k}{z} \right|^2$$

$$\phi_{\text{sol}}[N,\vec{\theta}] \longrightarrow v[k,\vec{\theta}] \longrightarrow \mathcal{P}_{\zeta}[k_{i};\vec{\theta}] \longrightarrow S(\vec{\theta}) = \sum_{i} \left[\mathcal{P}_{\zeta}(k_{i};\vec{\theta}) - \mathcal{P}_{\zeta}^{\text{rec}}(k_{i}) \right]^{2}$$

$$\mathcal{P}_{R} = \frac{H^{2}}{8\pi^{2}\epsilon} \longrightarrow \vec{\theta} \text{ in } \qquad \mathcal{P}_{\text{BPL}} = A \frac{\alpha_{1} + \beta_{1}}{\beta_{1}(k/k_{*})^{-\alpha_{1}} + \alpha_{1}(k/k_{*})^{\beta_{1}}}$$



Publications

- 1. **D. Frolovsky**, S. Ketov, Are single-field models of inflation and PBH production ruled out by ACT observations?, arXiv.2505.17514
- 2. **D. Frolovsky**, S. Ketov, One-loop Corrections to the E-type α -attractor Models of Inflation and Primordial Black Hole Production, Physical Review D, 2025, 111, 083533
- 3. **D. Frolovsky**, F. Kühnel, I. Stamou, Reconstructing Primordial Black Hole Power Spectra from Gravitational Waves, Physical Review D, 2025, 111, 043538
- 4. **D. Frolovsky**, S. Ketov, Dilaton-axion Modular Inflation in Supergravity, International Journal of Modern Physics D, 2024, 33(14), 234008
- 5. **D. Frolovsky**, S. Ketov, Production of Primordial Black Holes in Improved E-Models of Inflation, Universe, 2023, 9(6), 294
- 6. **D. Frolovsky**, S. Ketov, Fitting Power Spectrum of Scalar Perturbations for Primordial Black Hole Production during Inflation, Astronomy, 2023, 2(1), 47–57
- 7. **D. Frolovsky**, S. Ketov, S. Saburov, E-models of Inflation and Primordial Black Holes, Frontiers in Physics, 2022, 10, 1005333
- 8. **D. Frolovsky**, S. Ketov, S. Saburov, Formation of Primordial Black Holes after Starobinsky Inflation, Modern Physics Letters A, 2022, 37(21), 2250135
- 9. V. Abakumova, **D. Frolovsky**, H.-C. Herbig, S. Lyakhovich, Gauge Symmetry of Linearised Nordström Gravity and the Dual Spin Two Field Theory, The European Physical Journal C, 82(9), 780