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Arrow of time

Main events in the history of the Universe

Energy/Temp Time Event/Epoch
10'7GeV 10*3sec Planck Time
Inflation

10'4GeV 10-3%sec end of Inflation. Reheating. Beginning of Big Bang

10-34sec end of grand unification. Baryogenesis: formation of matter-antimatter asymmetry
300GeV 10"'2sec end of electroweak unification
|GeV 10-5sec Normal physics. Composition of the Universe: n,p, e",e*, Y,V
IMeV Isec Neutrino decoupling. Neutrino do not interact with the rest of matter
0.5MeV Electron-positron annihilation. Composition: n, p, e, Y, V
0.1MeV | 00sec Big Bang Nucleosynthesis: formation of elements He,D, Li
10°K 103yrs Equality of matter and radiation: Pmatter = Prel.particles
3000K =0.3eV 10%yrs Recombination and Decoupling. Composition: H,He, Y, Vv

|Gyr (z=10) First galaxies. QSO quickly form.

z=3 Galaxy formation

z=1-2 Formation of clusters and superclusters.  Acceleration of the Universe.

I3Gyrs

Now




Probing different epochs with observations

Epoch Phenomenon Test
Spectrum of perturbation on ve *Large-scale CMB anisotropies
Inflation P P Y eLarge-scale spectrum of perturbation

long scales

in distribution of galaxies

Moment of equality

Position of maximum in the spectrum
of perturbations

Distribution of galaxies: Spectrum,
sizes of large voids, Superclusters.

BBN

abundance of light elements: He, D, Li

ISM, stellar atmospheres, spectra of
high-z galaxies

Recombination

Small-scale structure of CMB

CMB anisotropies on armin -degree
scales

Acceleration of the Universe

Distances depend on the rate of
expansion

Distances to SNI

Dark matter

eRotation curves of galaxies
*Possible annihilation signal from
centers of galaxies

eX-ray emission from clusters of
galaxies

L ensing of galaxies




Evolution of perturbations at early times:

linear growth

Inflation provides very a simple spectrum of fluctuations: gaussian
fluctuations 1n metrics (=gravitational potential):
(Ad)2x constant when averaged over spheres of radius R.

This gives the power spectrum of fluctuations in the density

P(k) o k, where k 1s a wavenumber :

1P ! L PR) = (k)

2

> k > k

After Inflation After moment of equality



The Universe is not uniform. We have ignored this when we talked about FRW metric
and when we discuss physics of early Universe such as Big Bang Nucleosynthesis or neutrino
freeze-out (when neutrino decouple from the rest of the matter). There is a reason why we

treated the Universe as homogeneous: the deviations from homogeneity are small and they
were even smaller in the past.

There numerous issues related with perturbations. Big Bang itself cannot explain how the
fluctuations formed. There is a natural source of fluctuations: statistical fluctuations in a
medium, which consists of discrete particles. The amplitude of those fluctuations is roughly
1/sqrt(N), where N is the number of particles in some given volume. There are two problems
with those fluctuations. First, their amplitude is very small. For example, consider a cluster of
galaxies with mass about 1e15 Solar mass. Calculate the number of protons and take square
root of it. This is what we expect from statistical mechanics. Second, the fluctuations (small
or very small) grow relatively slow. This is due to the expansion of the Universe. In the
absence of expansion the fluctuations grow exponentially:
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Here fJ is the density and f,‘g n is the dynamical time scale. Unfortunately, the
2

fluctuations grow much slower: only as a power-law 8o< A J=Il-2
and statistical fluctuations do not ’

play any role as an origin of fluctuations. Thus, we need something else. So far, the only
explanation for the origin of fluctuations is coming from Inflation.

Regardless their origin, fluctuations can be decomposed into MODES (components).
In addition, we need to pay attention to different physical components: perturbations in

dark matter, in gas, or radiation are different and they evolve differently.

Modes:

A radiation
g 3

72N R gas or oark

R matter
—7 T"I(S g cUurvature Zadiabatic
Pextuvrbations

In this mode the metric is perturbed and
The amplitude of perturbations initially
is the same for all different mass
component.

;S:-L- 2%§= AWTG'J?mg

Different modes of
perturbations

Vorticity: dies out due
to expansion: v ~ 1/a

Perturbations from Big
Bang do not have
rotational component



Distance to the horizon Question: what fraction of the Universe can be possibly in causal
contact? We need to find the proper distance at z=0 for a point, from which we receive light
for the first time. This will be the distance to the horizon.

We chose a frame, which is most convenient for integration. We are at the origin and the

point, from which we receive the light is along the radius.

We start with FRW:

dst= e - ') +f='ﬂ]

Fix time and find proper distance to an object with coordinate distance ry

1) = aft) ’;‘dr

In order to take the integral, we need to know the coordinate distance to the point, from
which we receive the light for the first time in the history of the Universe. We find this by
putting ds=0 into FRW and integrating it from t=0 till present:

-
ds-0 — colt = a(¢)dr _9/ Yar
a(é) AT

Thus € At
d” ) a({—)[ a?)



Thus € s
t) = e At
d, (¢) a(—(—)j =

For flat universe dominated by non-relativistic particles Qa ('H < € /3
In this case 3/
dH {f) = —2-9' a =3 C'b

Ho
)
For flat universe dominated by relativistic particles @ (’f) =t /2
And { < a? (dy=2ct)

A 3/ 2.
distance :
x >
a l
\
— > a
radiatoun maeittev
s> va i uate) Jonunatdes

Important notion: distance to the horizon grows faster than wavelengths of
waves, which expand together with the Universe. Thus, free waves were outside
of the horizon at early moment and cascade inside the horizon at later moments.
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Very long waves

Adiabatic modes with wavelength much longer than the distance to the
horizon. There are two modes: growing and decaying. Here is the
derivation for the growing mode:

\ AsS>ct

F£-P
b \H//y_;

Each fragment of the wave has size of the horizon at that moment of time. Thus, different
parts of the long wave cannot "communicate” with other parts. Each fragment evolves

independently as a Friedmann universe with slightly different density, but with the same
Hubble constant:
Ly

-2
655 g

a
Because the Hubble constant is the same (this selects the fastest growing mode),
We get:

STEp- b = ST py

/Ob = u)rper{-urb edf ,(,_,,5;-(_7'

g 3_ > 1 o< 2'
a* 86 S apb

For matter-dominated Universe we get:
2/3

pbqo\3 =5 Qo< ax £

For radiation-dominated Universe:

[JOQOL‘/ = 80(0%°<t



Case: waves inside the horizon, relativistic particles dominate
Growth of perturbations in non-relativistic matter. Fluctuations in the
relativistic matter are wiped out by the free streaming.

T o -4
4= 225 () P, pyo
.. e 8 Pm"4pm$
84—2%8: Lf(lTG’J)mg <Pm

Note that delta is the density contrast

2 o in matter, not in the total density

Fr Oeq
The equation for the growth
rate takes the form: ZS 2‘_3% C!S\ 3 S

dg 23(“‘3)83 2\3,04-})

The growing solution of this equation can be found by trying: 8; 0
This gives:

Introduce new variable: 3, =
Change variable t->y

=0




We define the power spectrum as

Here the averaging is done over all P(K) _ 8 . 32‘>
Waves with given k and over the whole space - K |
8(x )8 (1)
Correlation function is defined as % (r)= < ()() (x+r >

log(P(k))

log(wavelength)

dH

o mm Em = . -
*
*

Fluctuation

slow

1
1 acceleration
1

. log(expansion parameter)
equality

Chessboard of growth of adiabatic perturbations

equality

late equality « » earlier equality

Power spectrum evolution



Case: flat Universe with cosmological constant ( a‘ )Z 8ﬁ-6_ JD N /\ Q‘L.
o) " 3z =)

Solution for the growth of smaII perturbations is

22
| JI-\-?C x dzx H:—
- — ‘HQJ[H—DC])?‘ YLA=SL, Hz_
Q \/3
g X=X, A= ( _ﬂ'_\°) O,
f 0
x — (QI\,O)Vs
Kshqu ) QO

4 onsition

£ > Q



Three models: 1) Flat, matter only
2) Flat +Cosmological constant
3) Open, no cosmological constant

Left panel: the same amplitude of fluctuations at early times

Right panel: The same amplitude at z=0
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Growth of fluctuations in different components

Evolution of adiabatic CDM and
baryons from earlytimes
through recombination.

Solid lines are the baryon
perturbations, dashed lines the CDM
perturbations, and dotted lines the
massive neutrino perturbations.
Perturbations on four size scales are
shown; each scale is normalized to
have the same initial amplitude,
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Power Spectrum Thursday, October 1
C

S o
Consider a field of density perturbations in a volume 7\ 8 (7() . P«X )" Eb

The average of the density contrast is equal to zero:

(8(x)> =0

.o

Let's find the dispersion of the density contrast: < g (11)>
Decompose the density contrast into the Fourier spectrum




ind the dispersion: 2. = >
Vv
) A K (KX 3 1 ¥ fz'f ‘ A
"J'_A___’i % aagge de KzSE,, e = 0.5
v v (2m) s K
3 3 _L(K-X)x

Change the order of integration:

) _[Sediy ¢ s
= ) -9 4 V )
(2ar)6 X X — Y
3(K-K')
« ;3 PR oL - O A
= Vg 19 = g, TR [S

Thus, we get: 2 _ \/ Kz_gzcl\‘
(6)=-= -



We define the power spectrum as

Here the averaging is done over all P(K — 8 R ;2 >
Waves with given k and over the whole space K |

Correlation function is defined as % (l") = < 8()7) S(;"' ?)>

The averaging is done for the whole

volume and over angles of vector F‘ _iRx 2 X ,E’(;'-o-ir"-)
3 Vdsk S e ._‘-———VJK g-\ 2 -
£(r) = ’LBUL T ) % (2m)> K’ )
- LT Vv (Z‘W) L
CKr X
m)” =
(R
(d(wsé)cl‘f e
imaginary

(Kr
e = ws(Krw>9)+i;M(/K’rw59)

2 .
a'JC'J dy os(Krx)= Sonfkr)
o Ky




Thus, we get the relation between the correlation function and the power
spectrum:

rbo
N 2 SinkKr ooy
g(r) =52 KdK == P(K)

There is an inverse relation:

p(K):Qn’frzdr ;(I’j Sih K
Al




Power Spectrum
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Dependance of P(k) on Qmatter
Amplitude of fluctuations and Qparyons are fixed.
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Power Spectrum

Zoom-in on the domain of BAO peaks
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Dependance of Correlation function on Qmatter
Amplitude of fluctuations is fixed at 5SMpc/h
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Dependance of Correlation function on Qmbaryon
Amplitude of fluctuations is fixed at 5SMpc/h
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At the end of the day the LCDM explains both P(k) and correlation function of galaxies
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Effects of massive neutrinos on power spectrum

Suppression in matter power for varying Zm,, for normal hierarchy

0.02
— ) m,=0.06 eV
—_— =0.095 eV
0.00 _“\\\\ Zmu eVl
3 — Y m,=0.13 eV
— Zm,,=0.165 eV
-0.02} ]
— Zm,,=0.2 eV
o
. —0.04}
g
o
~
-
I, —0.06}
g
0
nf -0.08|
-0.10}
-0.12}
-0.14 1
10* 103 102 10" 10° 10!

Dawson etal (eBOSS) 2017



Warm dark matter

Simulation mwpwMm|keV]
CDM-W7 —
m2.3 2.322
m2.0 2.001
mi.6 1.637
mi.5 1.456

Lovell et al 2014
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Warm dark matter

Random (“thermal”) velocities of dark matter
particles suppress fluctuations in dark matter:
free-streaming effect. Details depend on
particular particle model of wdm candidates.

the wavenumber at which the linear WDM suppression
reaches 50% in terms of matter power, k; /o, w.r.t. the
ACDM case can be approximated as:

5 (mWDM)l'll Qpgp ) 01 h 1.22
Mpc \ 1keV 0.25 0.7 ’
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1o[

0.8

P(B)yypu/ P(K) scom

0.6

0.5

0.9

I,f ]777] = T T ]
\ N e - \ ,, E
N -
n \ \\ AN
\ \\ L Tl
WDM 2 keV N
\ \‘ :
WDM 1 keV \J
\\\ —":
V]
¢
z=3 S N
rz=42 N
- =54 ]
L \ i
\ ]
v
i N
N
SDSS HIRES + MIK] Y
> )

1 l 1 | L1 ] l

1 10

k (h/iMpc)

FIG. 1: Ratio between the 3D non-linear matter power spec-
trum of 3 different WDM models (1, 2 and 4 keV, black, blue
and orange curves) at 3 different redshifts (z = 3, 4.2, 5.4,
represented by the dot-dashed, dashed and continuous curves)
and the corresponding ACDM model. The green curve rep-
resents the linear redshift independent suppression in terms

Viel et al 2013

of matter power for a mwpwm = 2 keV model obtained using



Bode et al 2001

Fig. 4— Projected density of 20 h~Mpc boxes, on a logarithmic scale of surface density. Left to
right: ACDM, mx=350 eV and mx=175 eV AWDM. Top to bottom: redshift Z =3, 2, and 1. A
simulation with mx ~ 1 keV would have an appearance intermediate between the left and central
columns. (A higher resolution version of this Figure is available at the web site referred to in the
introduction.)



LCDM WDM

Lovell et al 2014



Abundance of galaxies in WDM vs. LCDM

Klypin et al. 2015
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Figure 6. Circular VF for haloesinthe ACDM and WDM models. Open cir-
cles are results from the Bolshoi simulation (Klypin et al. 201 1) for WMAP7
cosmology. The dashed line is the power-law approximation. Filled circles
are for the BolshoiP simulation (Klypin et al. 2014) for the Planck cos-
mology. The top solid line shows a power-law fit for this cosmology. Other
curves are analytical fits for the WDM model with WMAP7 cosmological



