Radiation from supernovae and neutron star mergers

Masaomi Tanaka (Tohoku University, Japan)

Goals of this lecture

- Why do supernovae (SNe) emit huge luminosity?
- Why does emission from SNe evolve with time?
- What can we learn from observations of SNe?

Why do NS mergers emit electromagnetic emission?
What can we learn from observations of NS merger?

Light curve (brightness as a function of time)

Luminous! (decay of ⁵⁶Ni)

Type I - Has a peak - Ia > Ib, Ic

Type II - Has a plateau

Summary: Power source of supernovae

- Erad ~ 10⁴⁹ erg
 - << Ekin (10⁵¹ erg) << Egrav (10⁵³ erg)

Power source

- **1. Radioactivity (**⁵⁶Ni) Important in all the types Type Ia > Core-collapse
- 2. Shock heating
 - Important for large-radius star (Type II)
- **3. Interaction with CSM** Ekin => Eth (Type IIn)

Summary: Light curves of supernovae

• Timescale of emission

- SN ejecta are initially optically thick
- Optical depth decreases with time
- Photons diffuse out from SN ejecta
- Source of opacity: bound-bound transitions and e-scattering
- Typical timescale t ~ κ^{1/2} Mej^{3/4} Ek^{-1/4}
 ~ κ^{1/2} Mej^{1/2} v^{-1/2}

Observations <=> physical quantities

~ 20 d

+ chemical composition

E, Mej, M(56Ni), X (element)

Lessons from supernova observations

Thermonuclear supernovae
 Core-collapse supernovae
 Gamma-ray bursts and supernovae

Light curves

10⁴² erg s⁻¹

Type la SNe eject more ⁵⁶Ni

4 types of supernovae

Host galaxies of supernovae

Elliptical galaxy

ESO

Type la

Type la Type lb, lc, ll

-ES-

II, Ib, Ic: Young stars (massive stars) Ia: Old stars (low-mass stars)

Binary system

White dwarf

David A. Hardy

WEBY

Thermonuclear explosion

Supernova!

Thermonuclear supernovae

Normal stars are stable with nuclear burning

Why do white dwarfs explode by nuclear burning?

Explosion of white dwarf

Nomoto+84, Timmes+

*NSE = nuclear statistical equilibrium

zone	Т (К)	P (g cm ⁻³)		Elements
1	(7-9) x 10 ⁹	10 ⁸⁻⁹	NSE + e-capture	⁵⁶ Fe, ⁵⁴ Fe, ⁵⁸ Ni
2	(5-7) x 10 ⁹	10 ⁷⁻⁸	NSE	56 Ni
3	(4-5) x 10 ⁹	<107	Incomplete Si burning	²⁸ Si, ³² S, ⁴⁰ Ca
4	< 4 x 10 ⁹	<107	Incomplete O burning	¹⁶ O, ²⁴ Mg

How to trigger explosion (progenitor scenarios)

Accretion from non degenerate star

Merger of two white dwarfs

single degenerate

double degenerate

Which is correct or dominant? Not yet understood

Summary: Thermonuclear supernovae

- Classified as Type Ia SNe
 - No H line, strong Si line
 - Discovered in all types of galaxies
- Thermonuclear explosion of white dwarf in binary
 - Thermonuclear runaway triggered when mass reaches Chandrasekhar limit => Homogeneous properties (standard candle)
 - Explosive nucleosynthesis
- Progenitor system is still not clear

Lessons from supernova observations

Thermonuclear supernovae
 Core-collapse supernovae

3. Gamma-ray bursts and supernovae

4 types of supernovae

Mass loss due to stellar wind

Initial mass and supernova types

Is this really correct?? => We need observational tests

SN progenitors in HR diagram

Smartt 09

Direct observations (only up to ~< 20 Mpc)

SN 2003gd in M74 (10 Mpc)

WFPC2 F300W, F606W, F814W

Smartt+04, Van Dyk+03

Galactic RSG 30 a 5.5 25 20 5.0 log L/L _© 16 4.5 12 10 4.0 SN 2003gd 8 3.5 6 $\log T_{\rm eff}$

Smartt 09

Red supergiant => Type II SN!!

Red supergiant => Type II SN!! ~ 10-20 Msun

Smartt 09

Wolf-Rayet stars => Type Ib/Ic??

No direct evidence

Light curves of Type Ib/Ic supernovae

Lyman+16

Timescale ~ 20 days (similar to Type Ia) velocity ~ 10,000 km/s (similar to Type Ia)

Physical quantities for Type Ib/Ic SNe

Ek ~ (0.5-5) x 10⁵¹ erg

Lyman+16

Ejecta mass of Type Ib/Ic SNe

Binary evolution plays an important role

Summary: Core-collapse supernovae

• Type II supernovae

- Explosion of red supergiants
- Tested with direct progenitor observations
- Type lb/lc supernovae
 - Explosion of stripped-envelope massive stars
 - Ejecta mass is relatively small (3-5 Msun)
 - Binary evolution may be a key

Lessons from supernova observations

Thermonuclear supernovae
 Core-collapse supernovae
 Gamma-ray bursts and supernovae

Gamma-ray bursts (GRBs)

https://science.nasa.gov/science-news/science-at-nasa/2008/16oct_grboverview/

Duration of GRBs

Short GRBs

Long GRBs

Long GRBs - supernova association

First observations in 1998

(long) GRB 980425/SN 1998bw

Galama+98

GRB 980425/SN 1998bw

- Type Ic (no H, He)

Broad line
 => High expansion
 velocity

Galama+98

Long GRB - supernovae

Cano et al. 2016

Short GRBs

No SN association

Kann+11

Host galaxies of short GRBs

Discovered also in elliptical galaxies

c.f. Similar to Type Ia SNe

Light curves of GRB-SN

Spectra of GRB-SNe

Flux

	Timescale	Velocity	Ejecta mass	Kinetic energy
lc	~15 d	8,000 km/s	~ 3 Msun	10 ⁵¹ erg
GRB-SN	~20 d	20,000 km/s		

Summary: GRB-SN

- Kinetic energy ~ 10⁵² erg
 Neutrino-driven explosion
 is difficult?? => BH
- Relativistic jets
 BH+accretion disk

Rapid rotation may be a key

Summary: explosive transients

	Spectrum	Galaxy	Progenitor	Ejecta mass	Kinetic energy
Type la	No H	Elliptical Spiral	White dwarfs	~ 1.4 Msun	10 ⁵¹ erg
Type II	Н	Spiral	Massive stars	~10 Msun	10 ⁵¹ erg
Type lb/lc	No H/He	Spiral	Massive stars	~3-5 Msun	10 ⁵¹ erg
Long GRBs	Type Ic Broad line	Spiral	Massive stars (rotating?)	~10 Msun	10 ⁵² erg
Short GRBs	??	Elliptical Spiral	Neutron stars?	??	??