Radiation from supernovae and neutron star mergers

Masaomi Tanaka (Tohoku University, Japan)

Goals of this lecture

- Why do supernovae (SNe) emit huge luminosity?
- Why does emission from SNe evolve with time?
- What can we learn from observations of SNe?

Why do NS mergers emit electromagnetic emission?
What can we learn from observations of NS merger?

Gravitational waves (GWs) from neutron star (NS) merger

LIGO Scientific Collaboration and Virgo Collaboration, 2017, PRL

Summary: explosive transients

	Spectrum	Galaxy	Progenitor	Ejecta mass	Kinetic energy		
Type la	No H	Elliptical Spiral	White dwarfs	~ 1.4 Msun	10 ⁵¹ erg		
Type II	Η	Spiral	Massive stars	~10 Msun	10 ⁵¹ erg		
Type lb/lc	No H/He	Spiral	Massive stars	~3-5 Msun	10 ⁵¹ erg		
Long GRBs	Type Ic Broad line	Spiral	Massive stars (rotating?)	~10 Msun	10 ⁵² erg		
Short GRBs	??	Elliptical Spiral	Neutron stars?	??	??		

Neutron star mergers

1. Neutron star mergers

2. Radiation from neutron star mergers

3. Observations of neutron star mergers

NS merger => mass ejection

Top view

Side view

Sekiguchi+15, 16

M ~ 10⁻³ - 10⁻² Msun v ~ 0.1 - 0.2 c

The origin of elements																	
1 H	Big bang Platinum Gold												² He				
³	⁴	5 6 7 8 9									9	10					
Li	Be	B C N O F									F	Ng					
11	12	Inside stars, supernovae								17	18						
Na	Ма	AI Si P S CI								C	Ar						
19	²⁰	21	22	23	24	25	²⁶	27	28	2)	³⁰	³¹	³²	33	³⁴	³⁵	³⁶
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
³⁷	³⁸	39	⁴⁰	41	⁴²	43	44	45	46	47	48	49	50	51	⁵²	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
55	56	57~71	72	⁷³	74	⁷⁵	76	77	⁷⁸	⁷⁹	⁸⁰	81	⁸²	⁸³	⁸⁴	⁸⁵	⁸⁶
CS	Ba	La-Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
⁸⁷	⁸⁸	^{89 ~ 103}	¹⁰⁴	¹⁰⁵	106	¹⁰⁷	108	109	110	¹¹¹	112	113	114	115	116	117	118
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
			57 La	58 Ce	59 Pr	60 Nd	⁶¹ Pm	⁶² Sm	⁶³ Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	⁶⁹ Tm	⁷⁰ Yb	71 Lu
			⁸⁹ Ac	⁹⁰ Th	⁹¹ Pa	92 U	⁹³ Np	⁹⁴ Pu	⁹⁵ Am	⁹⁶ Cm	97 Bk	⁹⁸ Cf	99 Es	100 Fm	¹⁰¹ Md	102 No	103 Lr

Neutron-capture nucleosynthesis

s (slow)-process

Ba, Pb, ... Inside of stars

r (rapid)-process

Au, Pt, U, ... ??

Explosive phenomena near the neutron star

Core-collapse supernova

Moderately neutron rich Ye ~ 0.45 (n_n ~ 1.2n_p)

NS merger

Very neutron rich Ye ~ 0.10 $(n_n ~ 9 n_p)$

$$Y_e = \frac{n_e}{n_p + n_n} = \frac{n_p}{n_p + n_n}$$

n_n = n_p for Ye = 0.50

Core-collapse supernovae

 $v_e + n \rightarrow p + e^ \bar{v}_e + p \rightarrow n + e^+$

 $\epsilon_{\bar{\nu_e}} > \epsilon_{\nu_e}$

Wanajo+11, Wanajo 14

Probably neutron rich but only moderately Ye ~ 0.45 (n_n ~ 1.2n_p)

Neutron star merger

Top view

Side view

Sekiguchi+15, 16

Very neutron rich (Composition of neutron star Ye ~ 0.10 (n_n ~ 9 n_p)

Conditions for r-process High n/seed ratio after step

$$\begin{array}{ll} A_{\rm final} = A_{\rm seed} + {\rm n/seed} \\ \textbf{~200} & \textbf{~50-100} \end{array}$$

n/seed ~> 100-150

Neutron star merger

$$Y_e = \frac{n_e}{n_p + n_n} = \frac{n_p}{n_p + n_n}$$

(ex) Ye = 0.1 ($n_n \sim 9 n_p$)

1 seed ⁵⁶Ni (Z = 28, N = 28) + ~200 free neutron

=> n/seed ~ 200

r-process nucleosynthesis in NS merger

(C) Nobuya Nishimura

	Supernova	NS merger				
Power source	⁵⁶ Ni	r-process elements				
Ejecta mass	1-10 Msun	0.01 Msun				
Ejecta velocity	5,000-10,000 km/s	30,000-60,000 km/s (0.1c-0.2c)				
Kinetic energy	10 ⁵¹ erg	1-5 x 10 ⁵⁰ erg				
Composition	H, He, C, O, Ca, Fe-group	r-process elements				

Neutron star mergers

1. Neutron star mergers

2. Radiation from neutron star mergers

3. Observations of neutron star mergers

Power source

Radioactive decay luminosity

²¹⁶ Po

"Kilonova/Macronova"

Initial works: Li & Paczynski 98, Kulkarni 05, Metzger+10, Goriely+11, ... **High opacity**: Kasen+13, Barnes & Kasen 13, MT & Hotokezaka 13, ...

Lpeak

Tpeak

Temperature ~ 5000 K => Optical and infrared wavelengths

Radiation from NS merger

Fainter and faster than supernovae Higher velocities than supernovae

Opacity

Higher opacity by factor of 100

(Kasen+13, Tanaka & Hotokezaka 13)

Statistical weight

= Number of state for a given I (1 electron) (different combinations of m_1 and m_z)

$$g = 2(2l + 1)$$

m_z (spin) m_l (orbital)

$$g = 2 \quad (l = 0, s shell)$$

$$g = 6 \quad (l = 1, p shell)$$

$$g = 10 \quad (l = 2, d shell)$$

$$g = 14 \quad (l = 3, f shell)$$

Number of state per configuration (n electrons)

$$_{g}C_{n} = \frac{g!}{n!(g-n)!}$$

(ex) Si I: $1s^2 2s^2 2p^6 3s^2 3p^2$ ${}_{6}C_2 = 15$ Fe I: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6$ ${}_{10}C_6 = 219$ Nd I: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 4d^{10} 5s^2 4f^4$ ${}_{14}C_4 = 1001$

Opacity

MT, Kato, Gaigalas+18

Radiation transfer simulations of kilonova

(MT & Hotokezaka 13, MT+14, MT 16)

Light curve: Fainter and faster than SNe

MT 16

Light curves of kilonova

Kasen+13, Barnes & Kasen 13, MT & Hotokezaka 13

L ~ 10⁴⁰-10⁴¹ erg s⁻¹ t ~ weeks NIR > Optical

Model: MT+17a

Constraints from the total amount in our Galaxy

Rosswog+17, Hotokezaka+15, 18

Neutron star mergers

1. Neutron star mergers

2. Radiation from neutron star mergers

3. Observations of neutron star mergers

2017 Aug 17

GW170817: The first detection of GWs from a NS merger

LIGO Scientific Collaboration and Virgo Collaboration, 2017, PRL

Detection of short GRBs

Short GRB - NS merger connection

LIGO Scientific Collaboration and Virgo Collaboration, 2017, ApJ

Extremely weak gamma-rays

Abbott et al. 2017

Skymap from 3 detectors (LIGO x 2 + Virgo) ==> 30 deg² (~40 Mpc)

LIGO Scientific Collaboration and Virgo Collaboration, 2017

Coulter+17, Soares-Santos+17, Valenti+17, Arcavi+17, Tanvir+17, Lipunov+17

Movie: Utsumi, MT+17, Tominaga, MT+18

Electromagnetic counterpart of GW170817 @ 40 Mpc

Day 1

Day 7

Optical (z) near IR (H) near IR (Ks)

Utsumi, MT+17

Wide-field survey with Subaru/HSC

No other transient within 40 Mpc distance

Tominaga, MT et al. 2018

GW170817: optical/infrared light curves

16 -17 Infrared 17 -16 **Observed magnitude** Absolute magnitude 18 -15 19 -14 -13 20 **ptica** 21 -12 22 -11 15 5 10 Days after GW170817

Arcavi+17, Cowperthwaite+17, Diaz+17, Drout+17,Evans+17, Kasliwal+17,Pian+17, Smartt+17, Tanvir+17, Troja+17, Utsumi, MT+17, Valenti+17

> Signature of lanthanide elements Ejecta mass ~0.03 Msun (w/ ~1% of lanthanides)

Bolometric light curves

Heating rate ~ t^{-1.3}

Kasliwal+17

GW170817: Spectra

Smooth spectra (high velocity)
Not similar to known transients

Andreoni+17, Chornock+17, Kilpatrick+17 McCully+17, Nicholl+17, Pian+17, Shappee+17, Smartt+17

Pian+17

Prese

Dynamical ejecta (~< 10 ms)

Mej ~ 10⁻³ - 10⁻² Msun v ~ 0.1-0.2 c Low Ye (wide distribution)

Post-merger ejecta (~< 100 ms)

Mej >~ 10⁻² Msun v ~ 0.05 c Relatively high Ye

$$Y_e = \frac{n_e}{n_p + n_n} = \frac{n_p}{n_p + n_n}$$

 $v_e + n \rightarrow p + e^-$

High Ye => Suppression of heavy element production

MT+18

Nucleosynthesis is imprinted in the spectra

MT+18

Prese

Signature of lighter r-process elements

Constraints from the total amount in our Galaxy

Rosswog+17, Hotokezaka+15, 18

What we have learned from GW170817

- Red kilonova => production of lanthanide elements
- Blue kilonova => production of lighter r-process elements
- Production rate (rate x yield) explains the total abundance

Open issues

- Event rate?
- Which elements are produced?
 Similar to solar abundance ratios?

https://www.ligo.org/scientists/GWEMalerts.php

```
Expected event rate
```

R (NS-NS) ~ 100 - 4000 Gpc⁻³ yr⁻¹ V ~ $(4\pi/3)(100 \text{ Mpc})^3 ~ 4 \times 10^{-3} \text{ Gpc}^3$ N ~ R x V ~ 0.4 - 16 yr⁻¹ ~ a few events/ yr (0.4 event / yr - 1 event / 3 weeks)

Three events of interest so far

- S190425z: NS-NS (~150 Mpc, 7500 deg2)

- S190426c: NS-NS or BH-NS or noise (~380 Mpc, 1100 deg2

- S190510g: noise or NS-NS (~280 Mpc, 1200 deg2)

=> No convincing counterpart was identified

Summary: Neutron star merger

• NS merger

- Possible origin of r-process elements
- Radioactively powered transient: kilonova
- Observations of neutron star mergers
 - GW170817 and GRB 170817A
 - Both red and blue components
 => Production of lanthanide and lighter elements
 - Production rate fulfills the necessary condition

• (Near) future

- Accurate event rate + production rate
- Identification of elements

Goals of this lecture

Why do supernovae (SNe) emit huge luminosity?

- Why does emission from SNe evolve with time?
- What can we learn from observations of SNe?

Why do NS mergers emit electromagnetic emission?
What can we learn from observations of NS merger?