End point of stars revealed by supernovae

Takashi Moriya National Astronomical Observatory of Japan

Mass loss from massive stars

Smith (2014)

Mass-loss rate of a massive star

Circumstellar properties at the time of explosion

Dwarkadas (2007)

Strong shock between SN ejecta and CSM

• dynamics is usually not affected at the beginning (at SN phase)

200

Chevalier (1982)

1.2

s=2

n=12

 r/R_c

- electron acceleration at the shock
 - synchrotron emission

Type IIn supernovae

- outflow with ~ 100 km/s
 - too slow to be from SN ejecta (~ 10000 km/s)

Supernovae powered by circumstellar interaction

Type IIn supernova fraction

Shivvers et al. (2017)

Interaction between SN ejecta and dense CSM

radius

CSM density profile

$$dM = 4\pi r^2 \rho_{\rm CSM} dr$$

$$\dot{M} = 4\pi r^2 \rho_{\rm CSM} v_{\rm wind}$$

$$\rho_{\rm CSM} = \frac{\dot{M}}{4\pi v_{\rm wind}} r^{-2}$$

Interaction between SN ejecta and dense CSM

conservation of momentum

$$M_{\rm shock} \frac{dv_{\rm shock}}{dt} = 4\pi r_{\rm shock}^2 \left[\rho_{\rm ej} \left(v_{\rm ej} - v_{\rm shock} \right)^2 - \rho_{\rm csm} \left(v_{\rm shock} - v_{\rm w} \right)^2 \right]$$

momentum injection momentum injection
from SN ejecta from CSM

conservation of momentum

$$M_{\rm shock} \frac{dv_{\rm shock}}{dt} = 4\pi r_{\rm shock}^2 \left[\rho_{\rm ej} \left(v_{\rm ej} - v_{\rm shock} \right)^2 - \rho_{\rm csm} \left(v_{\rm shock} - v_{\rm w} \right)^2 \right]$$

momentum injection momentum injection from SN ejecta from CSM
$$\downarrow$$
$$r_{\rm shock}(t) = At^{\frac{n-3}{n-s}}$$

conservation of momentum

$$M_{\text{shock}} \frac{dv_{\text{shock}}}{dt} = 4\pi r_{\text{shock}}^2 \left[\rho_{\text{ej}} (v_{\text{ej}} - v_{\text{shock}})^2 - \rho_{\text{csm}} (v_{\text{shock}} - v_{\text{w}})^2 \right]$$

momentum injection momentum injection
from SN ejecta from CSM
$$\downarrow$$
$$T_{\text{shock}}(t) = At^{\frac{n-3}{n-s}}$$
$$\downarrow L = \epsilon \frac{dE_{\text{kin}}}{dt} = 2\pi\epsilon\rho_{\text{csm}}r_{\text{shock}}^2v_{\text{shock}}^3$$
$$L = L_1 t^{\alpha}$$
$$\alpha = \frac{6s - 15 + 2n - ns}{n-s}$$

Moriya et al. (2013a)

Moriya et al. (2013a)

Light curve of Type IIn SNe

$$L = 1.44 \times 10^{43} \left(\frac{t}{1 \text{ day}}\right)^{-0.536} \text{ erg s}^{-1}$$

Moriya et al. (2013a)

Type IIn SNe

Moriya et al. (2014)

Type IIn SNe

- interaction often continues more than several years
 - extended dense CSM
- mass-loss increase of the progenitors should continue for at least several decades before the explosions: how?

dense CSM

SN ejecta

100

Photon diffusion in dense CSM

photon diffuses in dense CSM

SN 2006gy

• Moriya et al. (2013b), Chatzopoulos et al. (2013), etc.

Mysteries

- How can we obtain such large mass loss?
 - only known star with ~ 0.1-1 Msun/yr: eta Carinae
 - during the Great Eruption for about 10 years

Ordinary Type II supernova light curves

Optical rise time of Type II supernovae

- observed optical rise time is short (~ 10 days, Gonzales+'15, Rubin+'16)
 - optical rise time is determined by the adiabatic cooling timescale
 - rise times obtained from RSG progenitor models are > 10 days
 - RSG radii are more than 500 Rsun

SN 2013fs: SN II discovered shortly after explosion

discovered at ~ 3 hours after the explosion

SN 2013fs: SN II discovered shortly after explosion

- first spectrum taken at ~ 6 hours after the explosion
 - very narrow hydrogen lines are observed

Early spectra of SN 2013fs

Modeling of the early spectrum

Dense CSM should exist just above the progenitor

Yaron et al. (2017)

• 10^{-5} Msun/yr, $v_{wind} = 10$ km/s, up to 10^{15} cm

• 10^{-3} Msun/yr, $v_{wind} = 10$ km/s, up to 10^{15} cm

Interaction between SN ejecta and dense CSM

Shortly after explosion = progenitor vicinity

Optical rise time of Type II supernovae

rapid rise due to dense CSM

Moriya et al. (2017)

Systematic study of early Type II SN light curves

- calculations of early SN light curves with different mass loss rates and β
- progenitors and energies are also changed: about 600 models in total

High cadence Transient Survey (HiTS)

- transient survey to find SNe just after the explosions using DECam
 - led by F. Förster in U. Chile
 - many Type II SNe shortly after the explosion are discovered

Förster, Moriya, et al. (2018)

Other Type II SNe with early discoveries

Förster, Moriya, et al. (2018)

RSG mass loss parameters estimated from SNe

RSG mass loss parameters estimated from SNe

Förster, Moriya, et al. (2018)

RSG mass loss shortly before explosion

- RSG mass loss rate shortly before explosion is more than 1e-4 Msun/yr
 - RSGs may somehow increase mass loss rates shortly before explosion
 - difference from usual RSG mass loss mechanism is not clear

it is hard to measure β in usual RSGs

•

• ζ Aur: β ~ 3.5 (Baade et al. 1996)

Mass loss enhancement in ordinary Type II SNe

- Type IIn supernovae
 - mass-loss enhancement for more than 100 years before explosion
- ordinary Type II supernovae
 - mass-loss enhancement within ~ 100 years before explosion

Shock breakout

Type Ibn supernovae

- SNe with narrow He lines
 - interaction between SN ejecta and He-rich CSM (sometimes with H)
 - ~ 1e-2 Msun/yr (1000 km/s): CSM density similar to Type IIn SNe

Type Ibn supernovae

- SN 2006jc
 - progenitor got bright ~ 2 years before the explosion (psnLBV?)

Pastorello et al. (2007)

Broad-line Type Ic supernova with dense CSM

• SN 2018gep (Ho et al. 2019)

Connecting explosion and mass loss

Connecting explosion and mass loss

Fuller (2017)

Timescales

$$\tau_{\rm dyn} \sim 4 \left(\frac{R}{100 R_{\odot}}\right)^{3/2} \left(\frac{M}{10 M_{\odot}}\right)^{-1/2} \text{ days}$$

$$\tau_{\rm th} \sim 300 \left(\frac{M}{10M_{\odot}}\right)^{2} \left(\frac{R}{100R_{\odot}}\right)^{-1} \left(\frac{L}{10^{5} L_{\odot}}\right)^{-1} \text{ yr}$$

$$\tau_{\rm nuc} \sim 10^{6} \left(\frac{\varepsilon}{10^{-3}}\right) \left(\frac{M}{10 M_{\odot}}\right) \left(\frac{L}{10^{5} L_{\odot}}\right)^{-1} \text{ yr}$$

Connecting explosion and mass loss

Fuller (2017)

Summary

- A significant fraction of core-collapse SN progenitors enhance their mass-loss rates shortly before their explosion
 - Type IIn: more than 100 years before the explosion
 - others: ~ 100 years or less before the explosion
- the mass-loss rates exceed ~ 10^{-3} Msun/yr
- how to connect explosions and mass-loss is not yet clear

