Non-Abelian Vortex Strings in supersymmetric gauge theories

A. Yung

August 7, 2023

Introduction

Nambu, Mandelstam, 't Hooft and Polyakov 1970's:
Confinement is a dual Meissner effect upon condensation of monopoles.

Electric charges condense \rightarrow magnetic Abrikosov-Nielsen-Olesen flux tubes (strings) are formed \rightarrow monopoles are confined

Nambu, Mandelstam, 't Hooft and Polyakov:
Dual Meissner effect:
Monopoles condense \rightarrow electric Abrikosov-Nielsen-Olesen flux tubes are formed \rightarrow electric charges are confined

$$
V(R)=T R, \quad T-\text { string tension }
$$

No progress for many years...

QCD:

- No monopoles
- No confining strings
- Strong coupling

Breakthrough discovery come from supersymmetry.

Seiberg and Witten 1994 : Exact solution of $\mathcal{N}=2$ supersymmetric QCD.
Supersymmetric gauge theories can be considered as a "theoretical laboratory" to develop insights in the dynamics of non-Abelian gauge theories.
Supersymmetric theories are "simplier" then real-world QCD Many aspects are determined by exact solutions.

Example: $\mathcal{N}=2$ Yang-Mills theory with gauge group $\operatorname{SU}(2)$ The field content:
SU(2) gauge field A_{μ}^{a},

+ adjoint complex scalar $=$ scalar gluon

$$
a^{a}, a=1,2,3
$$

+ fermions
Like Georgi-Glashow model Adjoint scalar develops condensate \rightarrow 't Hooft-Polyakov monopoles

Seiberg and Witten 1994 : Confinement in the monopole vacuum of $\mathcal{N}=2$ QCD
Cascade gauge symmetry breaking:

- $\mathrm{SU}(\mathrm{N}) \rightarrow \mathrm{U}(1)^{N-1}$
condensate of adjoint scalars
Example: $\mathrm{SU}(2) \rightarrow \mathrm{U}(1)$
- $\mathrm{U}(1)^{N-1} \rightarrow 0$
condensate of monopoles
At the last stage Abelian Abrikosov-Nielsen-Olesen flux tubes are formed.
Abelian confinement

In search for non-Abelian confinement non-Abelian strings were found in $\mathcal{N}=2 \mathrm{U}(\mathrm{N}) \mathrm{QCD}$ Hanany, Tong 2003
Auzzi, Bolognesi, Evslin, Konishi, Yung 2003
Shifman Yung 2004
Hanany Tong 2004
Non-Abelian string: Orientational zero modes
Rotation of color flux inside SU(N).

Abrikosov-Nielsen-Olesen strings

1. Higgs mechanism in Abelian Higgs model

$$
S_{A H}=\int d^{4} x\left\{-\frac{1}{4 g^{2}} F_{\mu \nu}^{2}+\left|\nabla_{\mu} q\right|^{2}-\lambda\left(|q|^{2}-\xi\right)^{2}\right\}
$$

where $\nabla_{\mu} q=\left(\partial_{\mu}-i n_{e} A_{\mu}\right) q$.
$U(1)$ gauge group is broken, $\langle q>=\sqrt{\xi}$, gauge field becomes massive

$$
m_{g}=\sqrt{2} g n_{e} \sqrt{\xi}
$$

The mass of the Higgs field is

$$
m_{H}=2 \sqrt{\lambda} \sqrt{\xi}
$$

Gauge phase is eaten

Number of degrees of freedom: Before

$$
2+2=4
$$

After
$3+1=4$

2. Abrikosov-Nielsen-Olesen vortices

Consider string-like solutions of equations of motion which depend only on $x_{i}, i=1,2$
$\pi_{1}(U(1))=\mathbb{Z}$
At $r \rightarrow \infty$ we have

$$
q \sim \sqrt{\xi} e^{i n \alpha}, \quad A_{i} \sim \frac{n}{n_{e}} \partial_{i} \alpha
$$

where n is integer and r, α are polar coordinates in $\left(x_{1}, x_{2}\right)$ plane.

$$
\begin{aligned}
& \nabla_{i} q \sim i n \partial_{i} \alpha-i n_{e} \frac{n}{n_{e}} \partial_{i} \alpha \sim o\left(\frac{1}{r}\right), \quad \int d^{2} x\left|\nabla_{i} q\right|^{2}=\text { finite } \\
& \Phi=\int d^{2} x F_{3}^{*}=\int_{C} d x_{i} A_{i}=\frac{n}{n_{e}} \int_{C} d x_{i} \partial_{i} \alpha=\frac{2 \pi n}{n_{e}}, \quad F_{3}^{*}=\frac{1}{2} \varepsilon_{i j} F_{i j} .
\end{aligned}
$$

Topological classes of fields A_{i}, q. Magnetic flux is quantized.

Ansatz for the string solution is

$$
q=\phi(r) e^{i n \alpha}, \quad A_{i}=\frac{1}{n_{e}} \partial_{i} \alpha[n-f(r)]
$$

with boudary conditions

$$
\begin{array}{ll}
\phi(0)=0, & \phi(\infty)=\sqrt{\xi} \\
f(0)=n, & f(\infty)=0
\end{array}
$$

$F_{3}^{*}=-\frac{1}{n_{e} r} f^{\prime}(r), \quad \Phi=\int d^{2} x F_{3}^{*}=-\frac{2 \pi}{n_{e}} \int_{0}^{\infty} d r f^{\prime}(r)=\frac{2 \pi f(0)}{n_{e}}$
Singular gauge $U=e^{-i n \alpha}$

$$
q=\phi(r), \quad A_{i}=-\frac{1}{n_{e}} \partial_{i} \alpha f(r)
$$

Equations of motion

$$
\begin{aligned}
& \phi^{\prime \prime}+\frac{\phi^{\prime}}{r}-\frac{f^{2} \phi}{r^{2}}-m_{H}^{2} \frac{\phi\left(\phi^{2}-\xi\right)}{2 \xi}=0 \\
& f^{\prime \prime}-\frac{f^{\prime}}{r}-\frac{m_{g}^{2}}{\xi} \phi^{2} f=0
\end{aligned}
$$

ANO string profile functions

Here $s=\phi / \sqrt{\xi}$.
At $r \rightarrow \infty$

$$
f \sim e^{-m_{g} r}, \quad(\phi-\sqrt{\xi}) \sim \sqrt{\xi} e^{-m_{H} r}
$$

Superconductivity
Type I $m_{H}<m_{g}$, Type II $m_{H}>m_{g}$, BPS $m_{H}=m_{g}$,

BPS ANO strings in $\mathcal{N}=2$ supersymmetric QED

1. $\mathcal{N}=2$ QED

Field content:
Gauge multiplet $A_{m u}, a+$ fermions λ_{1} and λ_{2}
Matter multiplet $q^{A}($ charge $=+1), \tilde{q}_{A}($ charge $=-1)$

+ fermions $\psi_{\alpha}^{A}, \tilde{\psi}_{\alpha A}, \alpha=1,2, A=1, \ldots, N_{f}$
The bosonic part of the action

$$
\begin{aligned}
& S=\int d^{4} x\left\{-\frac{1}{4 g^{2}} F_{\mu \nu}^{2}+\frac{1}{g^{2}}\left|\partial_{\mu} a\right|^{2}+\bar{\nabla}_{\mu} \bar{q}_{A} \nabla_{\mu} q^{A}+\bar{\nabla}_{\mu} \tilde{q}_{A} \nabla_{\mu} \overline{\tilde{q}}^{A}\right. \\
& -n_{e}^{2} \frac{g^{2}}{2}\left(\left|q^{A}\right|^{2}-\left|\tilde{q}_{A}\right|^{2}-\xi\right)^{2}-2 n_{e}^{2} g^{2}\left|\tilde{q}_{A} q^{A}\right|^{2} \\
& \left.-\frac{1}{2}\left(\left|q^{A}\right|^{2}+\left|\tilde{q}^{A}\right|^{2}\right)\left|2 n_{e} a+\sqrt{2} m_{A}\right|^{2}\right\}, \\
& \quad \nabla_{\mu}=\partial_{\mu}-i n_{e} A_{\mu}, \quad \bar{\nabla}_{\mu}=\partial_{\mu}+i n_{e} A_{\mu} .
\end{aligned}
$$

Consider the case $N_{f}=1$.
The vacuum is given by

$$
\langle a\rangle=-\frac{1}{n_{e} \sqrt{2}} m, \quad\langle q\rangle=\sqrt{\xi}, \quad\langle\tilde{q}\rangle=0,
$$

The spectrum:
One real component of field q is eaten up by the Higgs mechanism to become the third components of the massive photon. Three components of the massive photon, one remaining component of q and four real components of the fields \tilde{q} and a
$3+1+2+2=8$
$A_{\mu} q$ a \tilde{q}
form one long $\mathcal{N}=2$ multiplet (8 boson states +8 fermion states), with mass

$$
m_{\gamma}^{2}=2 n_{e}^{2} g^{2} \xi
$$

2. BPS ANO string solution

Look for the string solution using the ansatz

$$
a=-\frac{1}{n_{e} \sqrt{2}} m, \quad \tilde{q}=0
$$

Then the action becomes

$$
S=\int \mathrm{d}^{4} x\left\{-\frac{1}{4 g^{2}} F_{\mu \nu}^{2}+\left|\nabla_{\mu} q\right|^{2}-\frac{g^{2}}{2} n_{e}^{2}\left(|q|^{2}-\xi\right)^{2}\right\}
$$

Here $m_{H}=m_{g}$. Assume again that A_{i} and q fields depend only on $x_{i}, i=1,2$ and write for the string tension the Bogomolny representation

$$
\begin{aligned}
T & =\int d^{2} x\left\{\left[\frac{1}{\sqrt{2} g} F_{3}^{*}+\frac{g}{\sqrt{2}} n_{e}\left(|q|^{2}-\xi\right)\right]^{2}\right. \\
& \left.+\left|\nabla_{1} q+i \nabla_{2} q\right|^{2}+n_{e} \xi F_{3}^{*}\right\}
\end{aligned}
$$

Bogomolny representation ensures that for the given winding number n the string solution (minimum of energy) has tension which is determined by the topological charge (magnetic flux)

$$
T_{n}=2 \pi n \xi
$$

and satisfies the first order equations

$$
\begin{aligned}
& F_{3}^{*}+g n_{e}\left(|q|^{2}-\xi\right)=0, \\
& \left(\nabla_{1}+i \nabla_{2}\right) q=0 .
\end{aligned}
$$

For the elementary $n=1$ string the solution can be found using the standard ansatz

$$
q(x)=\phi(r) e^{i \alpha}, \quad A_{i}(x)=\frac{1}{n_{e}} \partial_{i} \alpha[1-f(r)]
$$

First order equations take the form

$$
-\frac{1}{r} \frac{d f}{d r}+n_{e}^{2} g^{2}\left(\phi^{2}-\xi\right)=0, \quad r \frac{d \phi}{d r}-f \phi=0
$$

Boundary conditions

$$
\begin{array}{ll}
\phi(0)=0, & \phi(\infty)=\sqrt{\xi}, \\
f(0)=1, & f(\infty)=0
\end{array}
$$

The profile functions for ANO BPS string can be found numerically

$\mathcal{N}=2$ supersymmetric QCD in four dimensions

$\mathcal{N}=2$ QCD with gauge group $U(N)=S U(N) \times U(1)$ and $N_{f}=N$ flavors of fundamental matter - quarks

Fayet-lliopoulos term of $U(1)$ factor The bosonic part of the action

$$
\begin{aligned}
S & =\int d^{4} x\left[\frac{1}{4 g_{2}^{2}}\left(F_{\mu \nu}^{a}\right)^{2}+\frac{1}{4 g_{1}^{2}}\left(F_{\mu \nu}\right)^{2}+\frac{1}{g_{2}^{2}}\left|D_{\mu} a^{a}\right|^{2}+\frac{1}{g_{1}^{2}}\left|\partial_{\mu} a\right|^{2}\right. \\
& \left.+\left|\nabla_{\mu} q^{A}\right|^{2}+\left|\nabla_{\mu} \overline{\tilde{q}}^{A}\right|^{2}+V\left(q^{A}, \tilde{q}_{A}, a^{a}, a\right)\right]
\end{aligned}
$$

Here

$$
\nabla_{\mu}=\partial_{\mu}-\frac{i}{2} A_{\mu}-i A_{\mu}^{a} T^{a}
$$

The potential is

$$
\left.\left.\begin{array}{rl}
V\left(q^{A}, \tilde{q}_{A}, a^{a}, a\right) & =\frac{g_{2}^{2}}{2}\left(\frac{i}{g_{2}^{2}} a b c \bar{a}^{b} a^{c}+\bar{q}_{A} T^{a} q^{A}-\tilde{q}_{A} T^{a} \tilde{\tilde{q}}^{A}\right.
\end{array}\right)^{2}\right) ~=\frac{g_{1}^{2}}{8}\left(\bar{q}_{A} q^{A}-\tilde{q}_{A} \tilde{\tilde{q}}^{A}-N \xi\right)^{2} .
$$

Vacuum

$$
\left\langle\frac{1}{2} a+T^{a} a^{a}\right\rangle=-\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
m_{1} & \ldots & 0 \\
\ldots & \ldots & \ldots \\
0 & \ldots & m_{N}
\end{array}\right),
$$

For special choice

$$
m_{1}=m_{2}=\ldots=m_{N}
$$

$\mathrm{U}(\mathrm{N})$ gauge group is unbroken.

$$
\begin{aligned}
\left\langle q^{k A}\right\rangle & =\sqrt{\xi}\left(\begin{array}{ccc}
1 & \ldots & 0 \\
\ldots & \ldots & \ldots \\
0 & \ldots & 1
\end{array}\right), \quad\left\langle\overline{\tilde{q}}^{k A}\right\rangle=0 \\
k & =1, \ldots, N \quad A=1, \ldots, N,
\end{aligned}
$$

- Color-flavor locking Both gauge $U(N)$ and flavor $S U(N)$ are broken, however diagonal $S U(N)_{C+F}$ is unbroken

$$
\begin{aligned}
\langle q\rangle & \rightarrow U\langle q\rangle U^{-1} \\
\langle a\rangle & \rightarrow U\langle a\rangle U^{-1}
\end{aligned}
$$

- Higgs phase \Longrightarrow Gluons are massive

$$
m_{S U(N)}=g_{2} \sqrt{\xi}, \quad m_{U(1)}=g_{1} \sqrt{\frac{N}{2} \xi}
$$

Scalars a^{a} and a have the same masses. Quarks are combined with gauge bosons in long $\mathcal{N}=2$ supermultiplets.

The theory is at weak coupling if we take

$$
\begin{gathered}
\sqrt{\xi} \gg \Lambda \\
\frac{8 \pi^{2}}{g_{2}^{2}(\xi)}=N \log \frac{\sqrt{\xi}}{\Lambda} \gg 1 \\
b=\left(2 N-N_{f}\right)=N
\end{gathered}
$$

\mathbb{Z}_{N} strings

We look for string solutions which depend only on $x_{i}, i=1,2$
Example in $U(2)=U(1) \times S U(2)$ Abrikosov-Nielsen-Olesen (ANO) string:

$$
\left.q\right|_{r \rightarrow \infty} \sim \sqrt{\xi} e^{i \alpha}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \quad A_{i} \sim 2 \partial_{i} \alpha, \quad A_{i}^{a}=0
$$

Magnetic $U(1)$ flux of ANO string is

$$
\Phi=\int d^{2} x F_{12}=4 \pi
$$

\mathbb{Z}_{2} string:

$$
\left.q\right|_{r \rightarrow \infty} \sim \sqrt{\xi}\left(\begin{array}{cc}
e^{i \alpha} & 0 \\
0 & 1
\end{array}\right), \quad A_{i} \sim \partial_{i} \alpha, \quad A_{i}^{3} \sim \partial_{i} \alpha
$$

Magnetic $U(1)$ flux of \mathbb{Z}_{2} string is

$$
\Phi=\int d^{2} x F_{12}=2 \pi
$$

Here r and α are polar coordinates in the plane orthogonal to the string axis

We set a^{a} and a fields to their VEV's and put $\tilde{q}=0$
The action of the model becomes

$$
\begin{aligned}
S & =\int \mathrm{d}^{4} x\left\{-\frac{1}{4 g_{2}^{2}}\left(F_{\mu \nu}^{a}\right)^{2}-\frac{1}{4 g_{1}^{2}}\left(F_{\mu \nu}\right)^{2}\right. \\
& \left.+\left|\nabla_{\mu} q^{A}\right|^{2}-\frac{g_{2}^{2}}{2}\left(\bar{q}_{A} T^{a} q^{A}\right)^{2}-\frac{g_{1}^{2}}{8}\left(\left|q^{A}\right|^{2}-N \xi\right)^{2}\right\}
\end{aligned}
$$

Now we can write Bogomolny representation

$$
\begin{aligned}
T & =\int d^{2} x\left\{\left[\frac{1}{\sqrt{2} g_{2}} F_{3}^{* a}+\frac{g_{2}}{\sqrt{2}}\left(\bar{q}_{A} T^{a} q^{A}\right)\right]^{2}\right. \\
& +\left[\frac{1}{\sqrt{2} g_{1}} F_{3}^{*}+\frac{g_{1}}{2 \sqrt{2}}\left(\left|q^{A}\right|^{2}-N \xi\right)\right]^{2} \\
& \left.+\left|\nabla_{1} q^{A}+i \nabla_{2} q^{A}\right|^{2}+\frac{N}{2} \xi F_{3}^{*}\right\},
\end{aligned}
$$

$$
F_{3}^{*}=F_{12} \text { and } F_{3}^{* a}=F_{12}^{a},
$$

First order equations

$$
\begin{aligned}
& F_{3}^{*}+\frac{g_{1}^{2}}{2}\left(\left|q^{A}\right|^{2}-N \xi\right)=0 \\
& F_{3}^{* a}+g_{2}^{2}\left(\bar{q}_{A} T^{a} q^{A}\right)=0 \\
& \left(\nabla_{1}+i \nabla_{2}\right) q^{A}=0
\end{aligned}
$$

One can combine the Z_{N} center of $\operatorname{SU}(N)$ with the elements $\exp (2 \pi i k / N) \in \mathrm{U}(1)$ to get a topologically stable string solution possessing both windings, in $\mathrm{SU}(N)$ and $\mathrm{U}(1)$.

$$
\pi_{1}\left(\mathrm{SU}(N) \times \mathrm{U}(1) / Z_{N}\right) \neq 0
$$

This nontrivial topology amounts to selecting just one element of q, say, q^{11}, or q^{22}, etc, and make it wind

$$
q_{\text {string }}=\sqrt{\xi} \operatorname{diag}\left(1,1, \ldots, e^{i \alpha}\right), \quad r \rightarrow \infty
$$

Elementary Z_{N} string solution

$$
\begin{gathered}
q=\left(\begin{array}{cccc}
\phi_{2}(r) & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & \ldots & \phi_{2}(r) & 0 \\
0 & 0 & \ldots & e^{i \alpha} \phi_{1}(r)
\end{array}\right), \\
A_{i}^{\mathrm{SU}(N)}=\frac{1}{N}\left(\begin{array}{cccc}
1 & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & \ldots & 1 & 0 \\
0 & 0 & \ldots & -(N-1)
\end{array}\right)\left(\partial_{i} \alpha\right)\left[-1+f_{N A}(r)\right], \\
A_{i}=\frac{2}{N}\left(\partial_{i} \alpha\right)[1-f(r)]
\end{gathered}
$$

Magnetic $U(1)$ flux of this Z_{N} string is

$$
\int d^{2} \times F_{12}=\frac{4 \pi}{N}
$$

First order equations

$$
\begin{aligned}
& r \frac{d}{d r} \phi_{1}(r)-\frac{1}{N}\left(f(r)+(N-1) f_{N A}(r)\right) \phi_{1}(r)=0, \\
& r \frac{d}{d r} \phi_{2}(r)-\frac{1}{N}\left(f(r)-f_{N A}(r)\right) \phi_{2}(r)=0, \\
& -\frac{1}{r} \frac{d}{d r} f(r)+\frac{g_{1}^{2} N}{4}\left[(N-1) \phi_{2}(r)^{2}+\phi_{1}(r)^{2}-N \xi\right]=0, \\
& -\frac{1}{r} \frac{d}{d r} f_{N A}(r)+\frac{g_{2}^{2}}{2}\left[\phi_{1}(r)^{2}-\phi_{2}(r)^{2}\right]=0 .
\end{aligned}
$$

Bogomolny representation gives tension of the elementary Z_{N} string

$$
T=2 \pi \xi
$$

Boundary conditions

$$
\begin{align*}
& \phi_{1}(0)=0 \\
& f_{N A}(0)=1, \quad f(0)=1, \tag{1}
\end{align*}
$$

at $r=0$, and

$$
\begin{array}{ll}
\phi_{1}(\infty)=\sqrt{\xi}, & \phi_{2}(\infty)=\sqrt{\xi} \\
f_{N A}(\infty)=0, & f(\infty)=0 \tag{2}
\end{array}
$$

at $r=\infty$.

Profile functions of the string (for $N=2$)

Non-Abelian strings

Vacuum is invariant with respect to $S U(N)_{C+F}$ rotation while the solution is not. Therefore applying $\operatorname{SU}(N)_{C+F}$ rotation we get the infinite family of solutions.

1. Go to the singular gauge. 2. Apply $\operatorname{SU}(N)_{C+F}$ rotation.

$$
\begin{aligned}
q & =U\left(\begin{array}{cccc}
\phi_{2}(r) & 0 & \ldots & 0 \\
\cdots & \ldots & \ldots & \ldots \\
0 & \ldots & \phi_{2}(r) & 0 \\
0 & 0 & \ldots & \phi_{1}(r)
\end{array}\right) U^{-1}, \\
A_{i}^{\mathrm{SU}(N)} & =\frac{1}{N} U\left(\begin{array}{cccc}
1 & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & \ldots & 1 & 0 \\
0 & 0 & \ldots & -(N-1)
\end{array}\right) U^{-1}\left(\partial_{i} \alpha\right) f_{N A}(r) \\
A_{i} & =-\frac{2}{N}\left(\partial_{i} \alpha\right) f(r) .
\end{aligned}
$$

Z_{N} solution breaks $S U(N)_{C+F}$ down to $S U(N-1) \times U(1)$ Thus the orientational moduli space is

$$
\frac{\mathrm{SU}(N)}{\mathrm{SU}(N-1) \times \mathrm{U}(1)} \sim \mathrm{CP}(N-1)
$$

Matrix U can be parametrized
$\frac{1}{N}\left\{U\left(\begin{array}{cccc}1 & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots \\ 0 & \ldots & 1 & 0 \\ 0 & 0 & \ldots & -(N-1)\end{array}\right) U^{-1}\right\}_{p}^{\prime}=-n^{\prime} n_{p}^{*}+\frac{1}{N} \delta_{p}^{\prime}$,
with

$$
n_{l}^{*} n^{\prime}=1
$$

The number of parameters

$$
N^{2}-1-(N-1)^{2}=2(N-1)
$$

Then the solution for the non-Abelian string takes the form

$$
\begin{aligned}
q & =\frac{1}{N}\left[(N-1) \phi_{2}+\phi_{1}\right]+\left(\phi_{1}-\phi_{2}\right)\left(n \cdot n^{*}-\frac{1}{N}\right) \\
A_{i}^{\mathrm{SU}(N)} & =\left(n \cdot n^{*}-\frac{1}{N}\right) \varepsilon_{i j} \frac{x_{j}}{r^{2}} f_{N A}(r) \\
A_{i} & =\frac{2}{N} \varepsilon_{i j} \frac{x_{j}}{r^{2}} f(r)
\end{aligned}
$$

$C P(N)$ model on the string

String moduli: $x_{0 i}, i=1,2$ and $n^{\prime}, I=1, \ldots, N$
Make them t, z-dependent. Translational moduli decouple.
Consider orientational moduli.
Substitute the string solution into 4D action.
We have to switch on gauge components $A_{k}, k=0,3$. Use the ansatz

$$
A_{k}^{\operatorname{SU}(N)}=-i\left[\partial_{k} n \cdot n^{*}-n \cdot \partial_{k} n^{*}-2 n \cdot n^{*}\left(n^{*} \partial_{k} n\right)\right] \rho(r)
$$

This gives

$$
\begin{aligned}
F_{k i}^{\mathrm{SU}(N)} & =\left(\partial_{k} n \cdot n^{*}+n \cdot \partial_{k} n^{*}\right) \varepsilon_{i j} \frac{x_{j}}{r^{2}} f_{N A}[1-\rho(r)] \\
& +i\left[\partial_{k} n \cdot n^{*}-n \cdot \partial_{k} n^{*}-2 n \cdot n^{*}\left(n^{*} \partial_{k} n\right)\right] \frac{x_{i}}{r} \frac{d \rho(r)}{d r} .
\end{aligned}
$$

To have a finite contribution from the term $\operatorname{Tr} F_{k i}^{2}$ in the action we impose the constraint

$$
\rho(0)=1 \quad \rho(\infty)=0
$$

Combining with contribution from quark kinetic terms we get 2D CP(N-1) model

$$
S^{(1+1)}=\beta \int d t d z\left\{\left(\partial_{k} n^{*} \partial_{k} n\right)+\left(n^{*} \partial_{k} n\right)^{2}\right\}
$$

with inverse coupling β

$$
\beta=\frac{4 \pi}{g_{2}^{2}} I
$$

where

$$
\begin{aligned}
I & =\int_{0}^{\infty} r d r\left\{\left(\frac{d}{d r} \rho(r)\right)^{2}+\frac{1}{r^{2}} f_{N A}^{2}(1-\rho)^{2}\right. \\
& \left.+g_{2}^{2}\left[\frac{\rho^{2}}{2}\left(\phi_{1}^{2}+\phi_{2}^{2}\right)+(1-\rho)\left(\phi_{2}-\phi_{1}\right)^{2}\right]\right\}
\end{aligned}
$$

Minimizing with respect to ρ we get second order equation for ρ
$-\frac{d^{2}}{d r^{2}} \rho-\frac{1}{r} \frac{d}{d r} \rho-\frac{1}{r^{2}} f_{N A}^{2}(1-\rho)+\frac{g_{2}^{2}}{2}\left(\phi_{1}^{2}+\phi_{2}^{2}\right) \rho-\frac{g_{2}^{2}}{2}\left(\phi_{1}-\phi_{2}\right)^{2}=0$
The solution is

$$
\rho=1-\frac{\phi_{1}}{\phi_{2}}
$$

Then

$$
I=1, \quad \beta=\frac{4 \pi}{g_{2}^{2}}
$$

The two-dimensional coupling is determined by the four-dimensional non-Abelian coupling.

The two-dimensional coupling is determined by the four-dimensional non-Abelian coupling. This relation is obtained at the classical level. In quantum theory both couplings run. What is the scale where this relation imposed? The two-dimensional $\mathrm{CP}(N-1)$ model is an effective low-energy theory appropriate for the description of internal string dynamics at low energies, lower than the inverse thickness of the string which is given by the masses of the gauge/quark multiplets

$$
m_{S U(N)}=g_{2} \sqrt{\xi}
$$

Thus, the parameter $m_{S U(N)}$ plays the role of a physical ultraviolet (UV) cutoff of the world sheet sigma model. This is the scale at which the relation beween couplings holds. Below this scale, the coupling β runs according to its two-dimensional renormalization-group flow

$$
2 \pi \beta=N \ln \frac{m_{S U(N)}}{\Lambda_{\sigma}}, \quad \frac{8 \pi^{2}}{g_{2}^{2}(\xi)}=N \log \frac{m_{S U(N)}}{\Lambda_{\mathrm{SU}(N)}}
$$

Equating two couplings we get

$$
\Lambda_{\sigma}=\Lambda_{\mathrm{SU}(N)}
$$

$C P(N-1)$ model is a low energy effective theory. There are infinite series of higher derivative corrections in powers of

to the action of $C P(N-1)$ model.

Example in $\mathrm{U}(2)$

$$
C P(1)=O(3)
$$

We have two dimensional $O(3)$ sigma model living on the string world sheet.

$$
S_{(1+1)}=\frac{\beta}{4} \int d t d z\left(\partial_{k} \vec{S}\right)^{2}, \quad \vec{S}^{2}=1
$$

where

$$
S^{a}=-n^{*} \tau^{a} n, \quad a=1,2,3
$$

Gauge theory formulation of $C P(N-1)$ model Witten 1979:
$\mathrm{CP}(N-1)==$ Higgs branch of $\mathrm{U}(1)$ gauge theory
The bosonic part of the action is

$$
\begin{aligned}
S_{C P(N-1)} & =\int d^{2} x\left\{\left|\nabla_{k} n^{\prime}\right|^{2}-\frac{1}{4 e^{2}} F_{k \mid}^{2}+\frac{1}{e^{2}}\left|\partial_{k} \sigma\right|^{2}+\frac{1}{2 e^{2}} D^{2}\right. \\
& \left.-2|\sigma|^{2}\left|n^{\prime}\right|^{2}+D\left(\left|n^{\prime}\right|^{2}-\beta\right)\right\},
\end{aligned}
$$

Condition

$$
\left|n^{\prime}\right|^{2}=\beta,
$$

imposed in the limit $e^{2} \rightarrow \infty$
Gauge field can be eliminated:

$$
A_{k}=-\frac{i}{2 \beta}\left(\bar{n}_{l} \partial_{k} n^{\prime}-\partial_{k} \bar{n}_{l} n^{\prime}\right), \quad \sigma=0
$$

Number of degrees of freedom $=2 N-1-1=2(N-1)$
Our string is BPS $\Rightarrow \mathcal{N}=(2,2)$ supersymmetric $C P(N-1)$ model

Large N solution of $C P(N-1)$ model

Witten 1979
Solved at large N both $\mathcal{N}=(2,2)$ and non-SUSY $C P(N-1)$ models.
At large N we integrate out fields n^{\prime} and their fermion superpartners

$$
\left[\operatorname{det}\left(-\partial_{k}^{2}-D+2|\sigma|^{2}\right)\right]^{-N}\left[\operatorname{det}\left(-\partial_{k}^{2}+2|\sigma|^{2}\right)\right]^{N}
$$

We get

$$
-\frac{N}{4 \pi}\left\{\left(-D+2|\sigma|^{2}\right)\left[\ln \frac{M_{\mathrm{uv}}^{2}}{-D+2|\sigma|^{2}}+1\right]-2|\sigma|^{2}\left[\ln \frac{M_{\mathrm{uv}}^{2}}{2|\sigma|^{2}}+1\right]\right\}
$$

The scale Λ_{σ} is defined by writing the bare coupling as

$$
\beta_{0}=\frac{N}{4 \pi} \ln \frac{M_{\mathrm{uv}}^{2}}{\Lambda_{\sigma}^{2}}
$$

in the term $-D \beta_{0}$ in the action.

We get

$$
\begin{aligned}
V_{\text {eff }} & =\int d^{2} \times \frac{N}{4 \pi}\left\{-\left(-D+2|\sigma|^{2}\right) \log \frac{-D+2|\sigma|^{2}}{\Lambda_{\sigma}^{2}}-D\right. \\
& \left.+2|\sigma|^{2} \log \frac{2|\sigma|^{2}}{\Lambda_{\sigma}^{2}}\right\}
\end{aligned}
$$

Minimizing this potential we get equations

$$
\begin{aligned}
& \left.2 \beta_{\mathrm{ren}}=\frac{N}{4 \pi} \log \frac{-D+2|\sigma|^{2}}{\Lambda_{\sigma}^{2}}=\left.0 \quad \rightarrow \quad\langle | n^{\prime}\right|^{2}\right\rangle=0 \\
& \log \frac{-D+2|\sigma|^{2}}{2|\sigma|^{2}}=0
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& 2|\sigma|^{2}=\Lambda_{\sigma}^{2} \\
& D=0
\end{aligned}
$$

The model has $U(1)$ axial symmetry which is broken by the chiral anomaly down to discrete subgroup $Z_{2 N}$ (Witten 1979). The field σ transforms under this symmetry as

$$
\sigma \rightarrow e^{\frac{2 \pi k}{N} i} \sigma, \quad k=1, \ldots, N-1
$$

$Z_{2 N}$ symmetry is spontaneously broken by the condensation of σ down to Z_{2},

$$
\sqrt{2}\langle\sigma\rangle=\Lambda e^{\frac{2 \pi k}{N} i} \quad k=0, \ldots, N-1
$$

There are N strictly degenerate vacua

Classically n^{\prime} develop VEV, $\left.\left.\langle | n\right|^{2}\right\rangle=\beta$
There are 2($N-1$) massless Goldstone states.
In quantum theory this does not happen
$S U(N)_{C+F}$ global symmetry is unbroken Mass gap $\sim \Lambda_{C P}$; no massless states $\left.\left(\left.\langle | n\right|^{2}\right\rangle=0\right)$ Kinks (domain walls) interpolating between different vacua. Kink masses are nonzero Kink sizes are stabilized in quantum regime, $\sim \Lambda_{\sigma}^{-1}$

Unequal quark masses

N quantum vacua of $C P(N-1)$ model and $N \mathbb{Z}_{N}$ strings? Introduce quark mass differences, This breaks $S U(N)_{C+F}$ down to $U(1)^{N-1}$
Consider $\mathrm{U}(2) \mathcal{N}=2$ QCD for simplicity. The string solution reduces to

$$
\begin{aligned}
q & =U\left(\begin{array}{cc}
\phi_{2}(r) & 0 \\
0 & \phi_{1}(r)
\end{array}\right) U^{-1}, \\
A_{i}^{a}(x) & =-S^{a} \varepsilon_{i j} \frac{x_{j}}{r^{2}} f_{N A}(r), \\
A_{i}(x) & =\varepsilon_{i j} \frac{x_{j}}{r^{2}} f(r), \quad S^{a}=-n^{*} \tau^{a} n .
\end{aligned}
$$

At large r the field a^{a} tends to its VEV aligned along the third axis in the color space,

$$
\left\langle a^{3}\right\rangle=-\frac{\Delta m}{\sqrt{2}}, \quad \Delta m=m_{1}-m_{2}
$$

The ansatz for the adjoint scalar

$$
a^{a}=-\frac{\Delta m}{\sqrt{2}}\left[\delta^{a^{3}} b+S^{a} S^{3}(1-b)\right]
$$

with boundary conditions

$$
b(\infty)=1, \quad b(0)=0
$$

This gives the potential

$$
V_{\mathrm{CP}(1)}=\gamma \int d^{2} \times \frac{\Delta m^{2}}{2}\left(1-S_{3}^{2}\right),
$$

where

$$
\begin{aligned}
\gamma & =\frac{2 \pi}{g_{2}^{2}} \int_{0}^{\infty} r d r\left\{\left(\frac{d}{d r} b(r)\right)^{2}+\frac{1}{r^{2}} f_{N A}^{2} b^{2}+\right. \\
& \left.+g_{2}^{2}\left[\frac{1}{2}(1-b)^{2}\left(\phi_{1}^{2}+\phi_{2}^{2}\right)+b\left(\phi_{1}-\phi_{2}\right)^{2}\right]\right\} .
\end{aligned}
$$

Minimization with respect to $b(r)$ gives

$$
b(r)=1-\rho(r)=\frac{\phi_{1}}{\phi_{2}}(r) \quad \gamma=I \times \frac{2 \pi}{g_{2}^{2}}=\frac{2 \pi}{g_{2}^{2}}
$$

Finaly we get

$$
S_{\mathrm{CP}(1)}=\frac{\beta}{2} \int d^{2} x\left\{\frac{1}{2}\left(\partial_{k} S^{a}\right)^{2}+\frac{|\Delta m|^{2}}{2}\left(1-S_{3}^{2}\right)\right\}
$$

For arbitrary N in the GLSM description we have

$$
\begin{aligned}
& S_{C P(N-1)}=\int d^{2} x\left\{\left|\nabla_{\alpha} n^{\prime}\right|^{2}-\frac{1}{4 e^{2}} F_{\alpha \beta}^{2}+\frac{1}{e^{2}}\left|\partial_{\alpha} \sigma\right|^{2}\right. \\
& \left.-\left|\sqrt{2} \sigma+m_{l}\right|^{2}\left|n^{\prime}\right|^{2}-\frac{e^{2}}{2}\left(\left|n^{\prime}\right|^{2}-\beta\right)^{2}\right\}+ \text { fermions }
\end{aligned}
$$

Classically at large mass differences N vacua are given by

$$
\left\langle n^{\prime}\right\rangle=\delta^{I_{0}}, \quad\langle\sqrt{2} \sigma\rangle=-m_{I_{0}}, \quad I_{0}=1, \ldots, N
$$

\mathbb{Z}_{N} strings.

Confined monopoles

Higgs phase for quarks \Longrightarrow confinement of monopoles
Elementary monopoles - junctions of two different strings
Example in $U(2)$

> monopole

string flux $=\int d x_{i} A_{i}=2 \pi n \cdot n^{*}, \quad n^{\prime}=\delta^{\prime \prime} 0$

monopole flux

$=$ string flux x_{10}-string flux ${ }_{10+1}=4 \pi \times \operatorname{diag} \frac{1}{2}\{\ldots, 1,-1, \ldots\}$

In 2D $C P(N-1)$ model on the string we have N vacua $=N Z_{N}$ strings and kinks interpolating between these vacua

Kinks $=$ confined monopoles

monopore

The first-order equations for the string junction

String junction is $1 / 4$-BPS
Consider $\mathrm{U}(N=2)$ theory. $\Lambda_{C P} \ll|\Delta m| \ll \sqrt{\xi}$
Bogomolny representation

$$
\begin{aligned}
E & =\int d^{3} x\left\{\left[\frac{1}{\sqrt{2} g_{2}} F_{3}^{* a}+\frac{g_{2}}{2 \sqrt{2}}\left(\bar{q}_{A} \tau^{a} q^{A}\right)+\frac{1}{g_{2}} D_{3} a^{a}\right]^{2}\right. \\
& +\left[\frac{1}{\sqrt{2} g_{1}} F_{3}^{*}+\frac{g_{1}}{2 \sqrt{2}}\left(\left|q^{A}\right|^{2}-2 \xi\right)+\frac{1}{g_{1}} \partial_{3} a\right]^{2} \\
& +\frac{1}{g_{2}^{2}}\left|\frac{1}{\sqrt{2}}\left(F_{1}^{* a}+i F_{2}^{* a}\right)+\left(D_{1}+i D_{2}\right) a^{a}\right|^{2} \\
& +\left|\nabla_{1} q^{A}+i \nabla_{2} q^{A}\right|^{2} \\
& \left.+\left|\nabla_{3} q^{A}+\frac{1}{\sqrt{2}}\left(a^{a} \tau^{a}+a+\sqrt{2} m_{A}\right) q^{A}\right|^{2}\right\}+E_{\text {surface }}
\end{aligned}
$$

Surface terms

$$
E_{\text {surface }}=\xi \int d^{3} x F_{3}^{*}-\sqrt{2} \frac{\left\langle a^{a}\right\rangle}{g_{2}^{2}} \int d S_{n} F_{n}^{* a}
$$

First order equations

$$
\begin{aligned}
& F_{1}^{* a}+i F_{2}^{* a}+\sqrt{2}\left(D_{1}+i D_{2}\right) a^{a}=0 \\
& F_{3}^{*}+\frac{g_{1}^{2}}{2}\left(\left|q^{A}\right|^{2}-2 \xi\right)+\sqrt{2} \partial_{3} a=0 \\
& F_{3}^{* a}+\frac{g_{2}^{2}}{2}\left(\bar{q}_{A} \tau^{a} q^{A}\right)+\sqrt{2} D_{3} a^{a}=0 \\
& \nabla_{3} q^{A}=-\frac{1}{\sqrt{2}}\left(a^{a} \tau^{a}+a+\sqrt{2} m_{A}\right) q^{A} \\
& \left(\nabla_{1}+i \nabla_{2}\right) q^{A}=0
\end{aligned}
$$

Ansatz for solution: String solution with z-dependence given by function $S^{a}(z)$

$$
S^{a}(-\infty)=(0,0,1), \quad S^{a}(\infty)=(0,0,-1)
$$

First order equations are satisfied if

$$
\partial_{3} S^{a}=\Delta m\left(\delta^{a 3}-S^{a} S^{3}\right), \quad \Delta m=m_{1}-m_{2}
$$

This equation is the first order equation for kink in $O(3)$ sigma model

$$
\begin{gathered}
E=\frac{\beta}{4} \int d z\left\{\left|\partial_{z} S^{a}-\Delta m\left(\delta^{a 3}-S^{a} S^{3}\right)\right|^{2}+2 \Delta m \partial_{z} S^{3}\right\} \\
M_{\text {kink }}=\beta \Delta m, \quad M_{M}=\frac{4 \pi}{g_{2}^{2}} \Delta m
\end{gathered}
$$

Since

$$
\beta=\frac{4 \pi}{g_{2}^{2}} \quad \rightarrow \quad M_{M}=M_{\mathrm{kink}}
$$

2D-4D correspondence

Kinks = confined monopoles

$$
\mathcal{N}=(2,2) \text { model : }
$$

monopole

$M^{\text {kink }}=M^{\text {monopole }}$
independent on ξ.

Kink masses

$$
M_{\| \prime^{\prime}}^{\mathrm{BPS}}=2\left|\mathcal{W}_{\mathrm{CP}}\left(\sigma_{p^{\prime}}\right)-\mathcal{W}_{\mathrm{CP}}\left(\sigma_{l}\right)\right|, \quad I, I^{\prime}=1, \ldots, N
$$

Compare with monopole masses

$$
\begin{gathered}
M_{I I^{\prime}}^{\text {monopole }}=\left|\frac{\sqrt{2}}{2 \pi i} \oint_{\beta_{\|^{\prime}}} d \lambda_{S W}\right|, \quad I, I^{\prime}=1, \ldots . N \\
M_{\| I^{\prime}}^{\text {monopole }}=M_{\| I^{\prime}}^{\text {kink }}, \quad I, I^{\prime}=1, \ldots, N
\end{gathered}
$$

Dorey 1998
Shifman Yung 2004
Hanany Tong 2004

Example in $\mathrm{U}(2)$
$U(2)$ gauge theory with $N_{f}=2$
Exact formula for the kink mass
$M_{r=N}^{\mathrm{kink}}=\left|\frac{1}{2 \pi}\left\{\Delta m \ln \frac{\Delta m+\sqrt{\Delta m^{2}+4 \Lambda_{C P}^{2}}}{\Delta m-\sqrt{\Delta m^{2}+4 \Lambda_{C P}^{2}}}-2 \sqrt{\Delta m^{2}+4 \Lambda_{C P}^{2}}\right\}\right|$
where $\Delta m=m_{1}-m_{2}$

Confined monopoles $=$ kinks

are stabilized by quantum (non-perturbative) effects in $C P(N-1)$ model on the string worldsheet

Consider non-Abelian regime $\left(m_{A}-m_{B}\right) \rightarrow 0$
Classical picture

$$
M_{M}=\frac{4 \pi\left(m_{\ell_{0}+1}-m_{\ell_{0}}\right)}{g_{2}^{2}} \rightarrow 0
$$

monopole size $\sim \Delta m^{-1} \rightarrow \infty$
Classically monopole disappear

Quantum picture $S U(N)_{C+F}$ global symmetry is unbroken Mass gap $\sim \Lambda_{C P}$ no massless states $\left.\left(\left.\langle | n\right|^{2}\right\rangle=0\right)$

$$
\begin{gathered}
M_{\text {monopole }}=M_{\text {kink }} \sim \Lambda_{C P} \\
\text { monopole size } \sim \Lambda_{C P}^{-1}
\end{gathered}
$$

$\xi^{-1 / 2}$

Physical picture of monopole confinement

Monopole-antimonopole meson.

Witten 1989
kink $\sim n^{\prime}$ at strong coupling
Monopole (anti-monopole) $=$ kink (anti-kink) is in the fundamental (anti-fundamental) representation of global
"flavor" $\operatorname{SU}(N)_{C+F}$

Baryons

$$
\Phi^{\operatorname{SU}(N)}=\int d^{2} x F_{3}^{* \operatorname{SU}(N)}=2 \pi\left(n \cdot n^{*}-\frac{1}{N}\right), \quad n^{\prime}=\delta^{I_{0}}
$$

$$
\sum_{l_{0}} \Phi_{l_{0}}^{\mathrm{SU}(N)}=0
$$

Therefore N different strings can form a closed configuration

a
b

Instead-of-confinement phase

Meson

Constituent quark $=$ monopole

At weak coupling these mesons are heavy and decay into screened quarks and gluons What about strong coupling?

Curves (walls) of marginal stability in 2D

Example in $\mathrm{CP}(1)$

$$
Z_{\text {kink }}^{\mathrm{BPS}}=m_{D} T+i \Delta m q, \quad M_{\text {kink }}^{\mathrm{BPS}}=\left|Z_{\text {kink }}^{\mathrm{BPS}}\right|
$$

T is the topologikal charge $T=0, \pm 1$, q is the global charge; $\mathrm{SU}(2)_{c+F} \rightarrow \mathrm{U}(1), q= \pm \frac{1}{2}, \pm 1, \ldots$ Decay $3 \rightarrow 1+2$,

$$
T_{3}=T_{1}+T_{2}, \quad q_{3}=q_{1}+q_{2}, \quad Z_{3}=Z_{1}+Z_{2}
$$

Curve of marginal stabilility

$$
\operatorname{Re} \frac{m_{D}}{\Delta m}=0
$$

In particular, perturbative state with $T_{3}=0, q_{3}=1$ decay at kink $T_{1}=1, q_{1}=\frac{1}{2}$ and antikink $T_{2}=-1, q_{2}=\frac{1}{2}$ at

$$
\operatorname{Re} \frac{Z_{1}}{\Delta m}=0
$$

Curves (walls) of marginal stability

$$
\beta=\operatorname{Re} \beta+i \frac{\theta_{2 D}}{2 \pi}, \quad 2 \pi \beta=2 \log \left(\frac{m_{1}-m_{2}}{\Lambda_{C P}}\right)
$$

Weak coupling
perturbative state

Strong coupling
kink anti-kink

quark or gluon

Question: Does these monopole-antimonopole mesons look like mesons in QCD?

- Correct flavor quantum numbers (adjoint + singlet)
- Lie on Regge tragectories

Instead-of-confinement phase is a new phase of asymptotically
free non-Abelian gauge theories
besides Higgs and confinement phases known previously
Looks very close to what we observe in the real-world QCD constituent quark $=$ monopole

From non-Abelian vortices to critical superstrings

Shifman and Yung, 2015 Idea:
Non-Abelian vortex string has more moduli then
Abrikosov-Nielsen-Olesen (ANO) vortex string.
It has translational + orientaional and size moduli: $x_{\mu}^{(0)}(\sigma, \tau)$ and $n^{\prime}(\sigma, \tau), \rho^{k}(\sigma, \tau)$
We can fulfill the criticality condition: $4+6=10$

- The solitonic non-Abelian vortex have six orientational and size moduli, which, together with four translational moduli, form a ten-dimensional space $\left(N=2, N_{f}=4\right)$.
- For $N_{f}=2 N 2 \mathrm{D}$ world sheet theory on the string is conformal.

For $\mathrm{U}(N=2)$ gauge group and $N_{f}=2$ the world sheet theory is $2 \mathrm{D} O(3)$ sigma model, $O(3)=C P(1)$
For $N=2$ and $N_{f}=4$ the world sheet theory is weighted $C P(2,2)$ model.
The target space of the weighted $C P(2,2)$ model is a non-compact Calabi-Yau manifold studied by Candelas, Witten and Vafa, namely

conifold.

Our goal:
Study states of closed string propagating on

$$
R_{4} \times Y_{6}, \quad Y_{6}=\text { conifold }
$$

and interpret them as hadrons in 4D $\mathcal{N}=2$ QCD.

Spectrum of spin-0 and spin-2 states as a function of the baryonic charge. Closed and open circles denote spin-0 and spin-2 states, respectively.

Conclusions

- Worldsheet internal dynamics of non-Abelian string in $\mathrm{U}(\mathrm{N})$ gauge theory with $N_{f}=N$ flavors is described by $C P(N-1)$ model
- Non-Abelian confined monopole $=C P(N-1)$ kink
- 2D-4D correspondence: exact BPS spectrum in quark vacuum of $\mathcal{N}=24 \mathrm{D}$ Seiberg-Witten theory coincides with BPS spectrum of $\mathcal{N}=(2,2) 2 \mathrm{D} C P(N-1)$ model
- In quark vacuum we have
"Instead-of-confinement" phase
Higgs-screened quarks and gauge bosons evolve into monopole-antimonopole stringy mesons.
- "Instead-of-confinement" phase is rather close to what we observe in the real-world QCD.
- For $N=2, N_{f}=4$ non-Abelian vortex behaves as a critical superstring

