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Introduction
Nambu, Mandelstam, ’t Hooft and Polyakov 1970’s:
Confinement is a dual Meissner effect upon condensation of
monopoles.

Electric charges condense → magnetic
Abrikosov-Nielsen-Olesen flux tubes (strings) are formed →
monopoles are confined

monopole

anti-monopole

Higgs phase
for charges



Nambu, Mandelstam, ’t Hooft and Polyakov:
Dual Meissner effect:
Monopoles condense → electric Abrikosov-Nielsen-Olesen flux
tubes are formed → electric charges are confined

monopoles

Higgs Phase for

charge

anticharge

V (R) = T R , T − string tension



No progress for many years...

DEAD

END

QCD:
▶ No monopoles
▶ No confining strings
▶ Strong coupling



Breakthrough discovery come from
supersymmetry.
Seiberg and Witten 1994 : Exact solution of
N = 2 supersymmetric QCD.
Supersymmetric gauge theories can be considered as a
‘’theoretical laboratory” to develop insights in the dynamics of
non-Abelian gauge theories.
Supersymmetric theories are ”simplier” then real-world QCD
Many aspects are determined by exact solutions.



Example: N = 2 Yang-Mills theory with gauge group SU(2)
The field content:
SU(2) gauge field Aa

µ,
+ adjoint complex scalar = scalar gluon aa, a = 1, 2, 3
+ fermions
Like Georgi-Glashow model
Adjoint scalar develops condensate → ’t Hooft-Polyakov
monopoles



Seiberg and Witten 1994 : Confinement in the monopole
vacuum of N = 2 QCD
Cascade gauge symmetry breaking:

▶ SU(N)→ U(1)N−1 condensate of adjoint scalars
Example: SU(2)→ U(1)

▶ U(1)N−1 → 0 condensate of monopoles

At the last stage Abelian Abrikosov-Nielsen-Olesen flux tubes
are formed.
Abelian confinement



In search for non-Abelian confinement non-Abelian strings
were found in N = 2 U(N) QCD
Hanany, Tong 2003
Auzzi, Bolognesi, Evslin, Konishi, Yung 2003
Shifman Yung 2004
Hanany Tong 2004
Non-Abelian string : Orientational zero modes
Rotation of color flux inside SU(N).

S



Abrikosov-Nielsen-Olesen strings

1. Higgs mechanism in Abelian Higgs model

SAH =

∫
d4x

{
− 1

4g 2
F 2
µν + |∇µq|2 − λ(|q|2 − ξ)2

}
where ∇µq = (∂µ − ineAµ) q.
U(1) gauge group is broken, < q >=

√
ξ, gauge field becomes

massive
mg =

√
2gne

√
ξ

The mass of the Higgs field is

mH = 2
√
λ
√
ξ

Gauge phase is eaten
Number of degrees of freedom: Before After

2+2=4 3+1=4



2. Abrikosov-Nielsen-Olesen vortices
Consider string-like solutions of equations of motion which
depend only on xi , i = 1, 2
π1(U(1)) = Z
At r → ∞ we have

q ∼
√
ξe inα, Ai ∼

n

ne
∂iα

where n is integer and r , α are polar coordinates in (x1, x2)
plane.

∇iq ∼ in∂iα− ine
n

ne
∂iα ∼ o(

1

r
),

∫
d2x |∇iq|2 = finite

Φ =

∫
d2x F ∗

3 =

∫
C

dxiAi =
n

ne

∫
C

dxi∂iα =
2πn

ne
, F ∗

3 =
1

2
εijFij .

Topological classes of fields Ai , q. Magnetic flux is quantized.



Ansatz for the string solution is

q = ϕ(r) e inα, Ai =
1

ne
∂iα [n − f (r)]

with boudary conditions

ϕ(0) = 0, ϕ(∞) =
√
ξ,

f (0) = n, f (∞) = 0

F ∗
3 = − 1

ne r
f ′(r), Φ =

∫
d2x F ∗

3 = −2π

ne

∫ ∞

0

dr f ′(r) =
2π f (0)

ne

Singular gauge U = e−inα

q = ϕ(r), Ai = − 1

ne
∂iα f (r)



Equations of motion

ϕ′′ +
ϕ′

r
− f 2ϕ

r 2
−m2

H

ϕ(ϕ2 − ξ)

2ξ
= 0

f ′′ − f ′

r
−

m2
g

ξ
ϕ2 f = 0



ANO string profile functions
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Here s = ϕ/
√
ξ.

At r → ∞

f ∼ e−mg r , (ϕ−
√
ξ) ∼

√
ξ e−mH r

Superconductivity
Type I mH < mg , Type II mH > mg , BPS mH = mg ,



BPS ANO strings in N = 2 supersymmetric QED
1. N = 2 QED
Field content:
Gauge multiplet Amu, a + fermions λ1 and λ2
Matter multiplet qA (charge =+1) , q̃A (charge =-1)
+ fermions ψA

α , ψ̃αA, α = 1, 2, A = 1, ...,Nf

The bosonic part of the action

S =

∫
d4x

{
− 1

4g 2
F 2
µν +

1

g 2
|∂µa|2 + ∇̄µq̄A∇µq

A + ∇̄µq̃A∇µ
¯̃qA

− n2e
g 2

2

(
|qA|2 − |q̃A|2 − ξ

)2 − 2n2eg
2
∣∣q̃AqA

∣∣2
−1

2
(|qA|2 + |q̃A|2)

∣∣∣2ne a +√
2mA

∣∣∣2} ,
∇µ = ∂µ − ineAµ , ∇̄µ = ∂µ + ineAµ .



Consider the case Nf = 1.
The vacuum is given by

⟨a⟩ = − 1

ne
√
2
m, ⟨q⟩ =

√
ξ, ⟨q̃⟩ = 0 ,

The spectrum:
One real component of field q is eaten up by the Higgs
mechanism to become the third components of the massive
photon. Three components of the massive photon, one
remaining component of q and four real components of the
fields q̃ and a
3 +1+2 +2 =8
Aµ q a q̃
form one long N = 2 multiplet (8 boson states + 8 fermion
states), with mass

m2
γ = 2n2e g

2 ξ.



2. BPS ANO string solution
Look for the string solution using the ansatz

a = − 1

ne
√
2
m, q̃ = 0

Then the action becomes

S =

∫
d4x

{
− 1

4g 2
F 2
µν + |∇µq|2 −

g 2

2
n2e
(
|q|2 − ξ

)2}
Here mH = mg . Assume again that Ai and q fields depend
only on xi , i = 1, 2 and write for the string tension the
Bogomolny representation

T =

∫
d2x

{[
1√
2g

F ∗
3 +

g√
2
ne
(
|q|2 − ξ

)]2
+ |∇1 q + i∇2 q|2 + ne ξ F

∗
3

}
,



Bogomolny representation ensures that for the given winding
number n the string solution (minimum of energy) has tension
which is determined by the topological charge (magnetic flux)

Tn = 2πn ξ

and satisfies the first order equations

F ∗
3 + gne

(
|q|2 − ξ

)
= 0 ,

(∇1 + i∇2)q = 0 .

For the elementary n = 1 string the solution can be found
using the standard ansatz

q(x) = ϕ(r) e i α , Ai(x) =
1

ne
∂iα [1− f (r)]

First order equations take the form

−1

r

df

dr
+ n2eg

2
(
ϕ2 − ξ

)
= 0 , r

d ϕ

dr
− f ϕ = 0



Boundary conditions

ϕ(0) = 0, ϕ(∞) =
√
ξ,

f (0) = 1, f (∞) = 0

The profile functions for ANO BPS string can be found
numerically
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N = 2 supersymmetric QCD in four dimensions
N = 2 QCD with gauge group U(N) = SU(N)× U(1) and
Nf = N flavors of fundamental matter – quarks

+

Fayet-Iliopoulos term of U(1) factor
The bosonic part of the action

S =

∫
d4x

[
1

4g 2
2

(
F a
µν

)2
+

1

4g 2
1

(Fµν)
2 +

1

g 2
2

|Dµa
a|2 + 1

g 2
1

|∂µa|2

+
∣∣∇µq

A
∣∣2 + ∣∣∇µ

¯̃qA
∣∣2 + V (qA, q̃A, a

a, a)
]
.

Here

∇µ = ∂µ −
i

2
Aµ − iAa

µ T
a .



The potential is

V (qA, q̃A, a
a, a) =

g 2
2

2

(
i

g 2
2

f abc ābac + q̄A T
aqA − q̃AT

a ¯̃qA

)2

+
g 2
1

8

(
q̄Aq

A − q̃A¯̃q
A − Nξ

)2
+ 2g 2

2

∣∣q̃AT aqA
∣∣2 + g 2

1

2

∣∣q̃AqA
∣∣2

+
1

2

N∑
A=1

{∣∣∣(a +√
2mA + 2T aaa)qA

∣∣∣2
+

∣∣∣(a +√
2mA + 2T aaa)¯̃qA

∣∣∣2} .



Vacuum

⟨1
2
a + T a aa⟩ = − 1√

2

 m1 . . . 0
. . . . . . . . .
0 . . . mN

 ,

For special choice

m1 = m2 = ... = mN

U(N) gauge group is unbroken.

⟨qkA⟩ =
√
ξ

 1 . . . 0
. . . . . . . . .
0 . . . 1

 , ⟨¯̃qkA⟩ = 0,

k = 1, ...,N A = 1, ...,N ,



▶ Color-flavor locking
Both gauge U(N) and flavor SU(N) are broken, however
diagonal SU(N)C+F is unbroken

⟨q⟩ → U⟨q⟩U−1

⟨a⟩ → U⟨a⟩U−1

▶ Higgs phase =⇒ Gluons are massive

mSU(N) = g2
√
ξ, mU(1) = g1

√
N

2
ξ

Scalars aa and a have the same masses. Quarks are
combined with gauge bosons in long
N = 2 supermultiplets.
( 3 + 1 + 2 +2 )(N2 − 1)= 8(N2 − 1), mSU(N)

Aµ q q̃ a
3 + 1 + 2 +2 = 8, mU(1)



The theory is at weak coupling if we take√
ξ ≫ Λ

8π2

g 2
2 (ξ)

= N log

√
ξ

Λ
≫ 1

b = (2N − Nf ) = N



ZN strings

We look for string solutions which depend only on xi , i = 1, 2
Example in U(2) = U(1)× SU(2)
Abrikosov-Nielsen-Olesen (ANO) string:

q|r→∞ ∼
√
ξ e iα

(
1 0

0 1

)
, Ai ∼ 2 ∂iα, Aa

i = 0

Magnetic U(1) flux of ANO string is

Φ =

∫
d2x F12 = 4π



Z2 string:

q|r→∞ ∼
√
ξ

(
e iα 0

0 1

)
, Ai ∼ ∂iα, A3

i ∼ ∂iα

Magnetic U(1) flux of Z2 string is

Φ =

∫
d2x F12 = 2π

Here r and α are polar coordinates in the plane orthogonal to
the string axis



We set aa and a fields to their VEV’s and put q̃ = 0
The action of the model becomes

S =

∫
d4x

{
− 1

4g 2
2

(
F a
µν

)2 − 1

4g 2
1

(Fµν)
2

+ |∇µq
A|2 − g 2

2

2

(
q̄AT

aqA
)2 − g 2

1

8

(
|qA|2 − Nξ

)2}
Now we can write Bogomolny representation

T =

∫
d2x

{[
1√
2g2

F ∗a
3 +

g2√
2

(
q̄AT

aqA
)]2

+

[
1√
2g1

F ∗
3 +

g1

2
√
2

(
|qA|2 − Nξ

)]2
+

∣∣∇1 q
A + i∇2 q

A
∣∣2 + N

2
ξ F ∗

3

}
,

F ∗
3 = F12 and F ∗a

3 = F a
12 ,



First order equations

F ∗
3 +

g 2
1

2

(∣∣qA
∣∣2 − Nξ

)
= 0 ,

F ∗a
3 + g 2

2

(
q̄AT

aqA
)
= 0 ,

(∇1 + i∇2)q
A = 0 .

One can combine the ZN center of SU(N) with the elements
exp(2πik/N) ∈U(1) to get a topologically stable string
solution possessing both windings, in SU(N) and U(1).

π1 (SU(N)× U(1)/ZN) ̸= 0 .

This nontrivial topology amounts to selecting just one element
of q, say, q11, or q22, etc, and make it wind

qstring =
√
ξ diag(1, 1, ..., e iα) , r → ∞ .



Elementary ZN string solution

q =


ϕ2(r) 0 ... 0

... ... ... ...

0 ... ϕ2(r) 0

0 0 ... e iαϕ1(r)

 ,

A
SU(N)
i =

1

N


1 ... 0 0

... ... ... ...

0 ... 1 0

0 0 ... −(N − 1)

 (∂iα) [−1 + fNA(r)] ,

Ai =
2

N
(∂iα) [1− f (r)]



Magnetic U(1) flux of this ZN string is∫
d2x F12 =

4π

N

First order equations

r
d

dr
ϕ1(r)−

1

N
(f (r) + (N − 1)fNA(r))ϕ1(r) = 0 ,

r
d

dr
ϕ2(r)−

1

N
(f (r)− fNA(r))ϕ2(r) = 0 ,

−1

r

d

dr
f (r) +

g 2
1N

4

[
(N − 1)ϕ2(r)

2 + ϕ1(r)
2 − Nξ

]
= 0 ,

−1

r

d

dr
fNA(r) +

g 2
2

2

[
ϕ1(r)

2 − ϕ2(r)
2
]
= 0 .

Bogomolny representation gives tension of the elementary ZN

string
T = 2πξ



Boundary conditions

ϕ1(0) = 0,

fNA(0) = 1, f (0) = 1 , (1)

at r = 0, and

ϕ1(∞) =
√
ξ, ϕ2(∞) =

√
ξ ,

fNA(∞) = 0, f (∞) = 0 (2)

at r = ∞.



Profile functions of the string (for N = 2)

f

φ

φ

3

1

f

2

r

1



Non-Abelian strings
Vacuum is invariant with respect to SU(N)C+F rotation while
the solution is not. Therefore applying SU(N)C+F rotation we
get the infinite family of solutions.
1. Go to the singular gauge. 2. Apply SU(N)C+F rotation.

q = U


ϕ2(r) 0 ... 0
... ... ... ...

0 ... ϕ2(r) 0
0 0 ... ϕ1(r)

U−1 ,

A
SU(N)
i =

1

N
U


1 ... 0 0
... ... ... ...
0 ... 1 0
0 0 ... −(N − 1)

U−1 (∂iα) fNA(r) ,

Ai = − 2

N
(∂iα) f (r) .



ZN solution breaks SU(N)C+F down to SU(N − 1)× U(1)
Thus the orientational moduli space is

SU(N)

SU(N − 1)× U(1)
∼ CP(N − 1)

Matrix U can be parametrized

1

N

U


1 ... 0 0

... ... ... ...

0 ... 1 0

0 0 ... −(N − 1)

U−1



l

p

= −nln∗p +
1

N
δlp ,

with
n∗l n

l = 1



The number of parameters

N2 − 1− (N − 1)2 = 2(N − 1)

Then the solution for the non-Abelian string takes the form

q =
1

N
[(N − 1)ϕ2 + ϕ1] + (ϕ1 − ϕ2)

(
n · n∗ − 1

N

)
,

A
SU(N)
i =

(
n · n∗ − 1

N

)
εij

xj
r 2

fNA(r) ,

Ai =
2

N
εij

xj
r 2

f (r) ,



CP(N) model on the string
String moduli: x0i , i = 1, 2 and nl , l = 1, ...,N
Make them t, z-dependent. Translational moduli decouple.
Consider orientational moduli.
Substitute the string solution into 4D action.
We have to switch on gauge components Ak , k = 0, 3. Use
the ansatz

A
SU(N)
k = −i

[
∂kn · n∗ − n · ∂kn∗ − 2n · n∗(n∗∂kn)

]
ρ(r)

This gives

F
SU(N)
ki = (∂kn · n∗ + n · ∂kn∗) εij

xj
r 2

fNA [1− ρ(r)]

+ i [∂kn · n∗ − n · ∂kn∗ − 2n · n∗(n∗∂kn)]
xi
r

d ρ(r)

dr
.

To have a finite contribution from the term TrF 2
ki in the action

we impose the constraint

ρ(0) = 1 ρ(∞) = 0



Combining with contribution from quark kinetic terms we get
2D CP(N − 1) model

S (1+1) = β

∫
dt dz

{
(∂k n

∗∂k n) + (n∗∂k n)
2
}

with inverse coupling β

β =
4π

g 2
2

I ,

where

I =

∫ ∞

0

rdr

{(
d

dr
ρ(r)

)2

+
1

r 2
f 2NA (1− ρ)2

+ g 2
2

[
ρ2

2

(
ϕ2
1 + ϕ2

2

)
+ (1− ρ) (ϕ2 − ϕ1)

2

]}
.



Minimizing with respect to ρ we get second order equation for
ρ

− d2

dr 2
ρ−1

r

d

dr
ρ− 1

r 2
f 2NA (1− ρ)+

g 2
2

2

(
ϕ2
1 + ϕ2

2

)
ρ−g 2

2

2
(ϕ1 − ϕ2)

2 = 0 .

The solution is

ρ = 1− ϕ1

ϕ2

Then

I = 1, β =
4π

g 2
2

The two-dimensional coupling is determined by the
four-dimensional non-Abelian coupling.



The two-dimensional coupling is determined by the
four-dimensional non-Abelian coupling. This relation is
obtained at the classical level. In quantum theory both
couplings run. What is the scale where this relation imposed?
The two-dimensional CP(N − 1) model is an effective
low-energy theory appropriate for the description of internal
string dynamics at low energies, lower than the inverse
thickness of the string which is given by the masses of the
gauge/quark multiplets

mSU(N) = g2
√
ξ

Thus, the parameter mSU(N) plays the role of a physical
ultraviolet (UV) cutoff of the world sheet sigma model. This is
the scale at which the relation beween couplings holds. Below
this scale, the coupling β runs according to its
two-dimensional renormalization-group flow



2πβ = N ln
mSU(N)

Λσ

,
8π2

g 2
2 (ξ)

= N log
mSU(N)

ΛSU(N)

Equating two couplings we get

Λσ = ΛSU(N)

CP(N − 1) model is a low energy effective theory. There are
infinite series of higher derivative corrections in powers of

∂

mSU(N)

to the action of CP(N − 1) model.



Example in U(2)

CP(1) = O(3)

We have two dimensional O(3) sigma model living on the
string world sheet.

S(1+1) =
β

4

∫
dt dz (∂k S⃗)

2, S⃗2 = 1

where
Sa = −n∗τ an, a = 1, 2, 3

S



Gauge theory formulation of CP(N − 1) model
Witten 1979:
CP(N − 1) == Higgs branch of U(1) gauge theory
The bosonic part of the action is

SCP(N−1) =

∫
d2x

{
|∇kn

l |2 − 1

4e2
F 2
kl +

1

e2
|∂kσ|2 +

1

2e2
D2

− 2|σ|2|nl |2 + D(|nl |2 − β)
}
,

Condition
|nl |2 = β ,

imposed in the limit e2 → ∞
Gauge field can be eliminated:

Ak = − i

2β
(n̄l∂kn

l − ∂k n̄l n
l), σ = 0

Number of degrees of freedom = 2N − 1− 1 = 2(N − 1)
Our string is BPS ⇒ N = (2, 2) supersymmetric CP(N − 1)
model



Large N solution of CP(N − 1) model
Witten 1979
Solved at large N both N = (2, 2) and non-SUSY CP(N − 1)
models.
At large N we integrate out fields nl and their fermion
superpartners[

det
(
−∂2k − D + 2|σ|2

)]−N [
det

(
−∂2k + 2|σ|2

)]N
,

We get

− N

4π

{(
−D + 2|σ|2

) [
ln

M2
uv

−D + 2|σ|2
+ 1

]
− 2|σ|2

[
ln

M2
uv

2|σ|2
+ 1

]}
The scale Λσ is defined by writing the bare coupling as

β0 =
N

4π
ln

M2
uv

Λ2
σ

in the term −Dβ0 in the action.



We get

Veff =

∫
d2x

N

4π

{
−
(
−D + 2|σ|2

)
log

−D + 2|σ|2

Λ2
σ

− D

+ 2|σ|2 log
2|σ|2

Λ2
σ

}
,

Minimizing this potential we get equations

2βren =
N

4π
log

−D + 2|σ|2

Λ2
σ

= 0 → ⟨|nl |2⟩ = 0

log
−D + 2|σ|2

2|σ|2
= 0

Solution:

2|σ|2 = Λ2
σ

D = 0.



The model has U(1) axial symmetry which is broken by the
chiral anomaly down to discrete subgroup Z2N (Witten 1979).
The field σ transforms under this symmetry as

σ → e
2πk
N

iσ, k = 1, ...,N − 1.

Z2N symmetry is spontaneously broken by the condensation of
σ down to Z2,

√
2⟨σ⟩ = Λ e

2πk
N

i k = 0, ...,N − 1.

There are N strictly degenerate vacua



σ

Classically nl develop VEV, ⟨|n|2⟩ = β
There are 2(N − 1) massless Goldstone states.
In quantum theory this does not happen
SU(N)C+F global symmetry is unbroken
Mass gap ∼ ΛCP ; no massless states (⟨|n|2⟩ = 0)
Kinks (domain walls) interpolating between different vacua.
Kink masses are nonzero
Kink sizes are stabilized in quantum regime, ∼ Λ−1

σ



Unequal quark masses
N quantum vacua of CP(N − 1) model and N ZN strings?
Introduce quark mass differences, This breaks SU(N)C+F

down to U(1)N−1

Consider U(2) N = 2 QCD for simplicity. The string solution
reduces to

q = U

(
ϕ2(r) 0
0 ϕ1(r)

)
U−1 ,

Aa
i (x) = −Sa εij

xj
r 2

fNA(r) ,

Ai(x) = εij
xj
r 2

f (r) , Sa = −n∗τ an .

At large r the field aa tends to its VEV aligned along the third
axis in the color space,

⟨a3⟩ = −∆m√
2
, ∆m = m1 −m2,



The ansatz for the adjoint scalar

aa = −∆m√
2

[
δa3 b + Sa S3 (1− b)

]
with boundary conditions

b(∞) = 1 , b(0) = 0

This gives the potential

VCP(1) = γ

∫
d2x

∆m2

2

(
1− S2

3

)
,

where

γ =
2π

g 2
2

∫ ∞

0

r dr

{(
d

dr
b(r)

)2

+
1

r 2
f 2NA b

2+

+ g 2
2

[
1

2
(1− b)2

(
ϕ2
1 + ϕ2

2

)
+ b (ϕ1 − ϕ2)

2

]}
.



Minimization with respect to b(r) gives

b(r) = 1− ρ(r) =
ϕ1

ϕ2
(r) γ = I × 2π

g 2
2

=
2π

g 2
2

Finaly we get

SCP(1) =
β

2

∫
d2x

{
1

2
(∂kS

a)2 +
|∆m|2

2

(
1− S2

3

)}



For arbitrary N in the GLSM description we have

SCP(N−1) =

∫
d2x

{∣∣∇αn
l
∣∣2 − 1

4e2
F 2
αβ +

1

e2
|∂ασ|2

−
∣∣∣√2σ +ml

∣∣∣2 ∣∣nl ∣∣2 − e2

2

(
|nl |2 − β

)2}
+ fermions

Classically at large mass differences N vacua are given by

⟨nl⟩ = δll0 , ⟨
√
2σ⟩ = −ml0 , l0 = 1, ...,N

ZN strings.



Confined monopoles

Higgs phase for quarks =⇒ confinement of monopoles
Elementary monopoles – junctions of two different strings
Example in U(2)

monopole

U(1)

3
τ

string flux =
∫
dxi Ai = 2π n · n∗, nl = δll0



monopole flux
= string fluxl0 - string fluxl0+1=4π × diag 1

2
{..., 1,−1, ...}

Almost free monopole

<<Λ

ξ
−1/2

<m < ξ
1/2

Confined monopole,
quasiclassical regime

Λ
−1

m 0

Confined monopole,
highly quantum regime

>> ξ
1/2

m

ξ
−1/2



In 2D CP(N − 1) model on the string we have
N vacua = N ZN strings
and kinks interpolating between these vacua

Kinks = confined monopoles

monopole

string 2string 1

kink

vacuum 1 vacuum 2

4D

2D



The first-order equations for the string junction
String junction is 1/4-BPS
Consider U(N = 2) theory. ΛCP ≪ |∆m| ≪

√
ξ

Bogomolny representation

E =

∫
d3x

{[
1√
2g2

F ∗a
3 +

g2

2
√
2

(
q̄Aτ

aqA
)
+

1

g2
D3a

a

]2
+

[
1√
2g1

F ∗
3 +

g1

2
√
2

(
|qA|2 − 2ξ

)
+

1

g1
∂3a

]2
+

1

g 2
2

∣∣∣∣ 1√
2
(F ∗a

1 + iF ∗a
2 ) + (D1 + iD2)a

a

∣∣∣∣2
+

∣∣∇1 q
A + i∇2 q

A
∣∣2

+

∣∣∣∣∇3q
A +

1√
2

(
aaτ a + a +

√
2mA

)
qA

∣∣∣∣2
}

+ Esurface



Surface terms

Esurface = ξ

∫
d3xF ∗

3 −
√
2
⟨aa⟩
g 2
2

∫
dSn F

∗a
n

First order equations

F ∗a
1 + iF ∗a

2 +
√
2(D1 + iD2)a

a = 0 ,

F ∗
3 +

g 2
1

2

(∣∣qA
∣∣2 − 2ξ

)
+
√
2 ∂3a = 0 ,

F ∗a
3 +

g 2
2

2

(
q̄Aτ

aqA
)
+
√
2D3a

a = 0 ,

∇3q
A = − 1√

2

(
aaτ a + a +

√
2mA

)
qA ,

(∇1 + i∇2)q
A = 0 .



Ansatz for solution: String solution with z-dependence given
by function Sa(z)

Sa(−∞) = (0, 0, 1), Sa(∞) = (0, 0,−1)

First order equations are satisfied if

∂3S
a = ∆m

(
δa3 − SaS3

)
, ∆m = m1 −m2

This equation is the first order equation for kink in O(3)
sigma model

E =
β

4

∫
dz
{∣∣∂zSa −∆m

(
δa3 − SaS3

)∣∣2 + 2∆m ∂zS
3
}

Mkink = β∆m, MM =
4π

g 2
2

∆m

Since

β =
4π

g 2
2

→ MM = Mkink



2D-4D correspondence
Kinks = confined monopoles

N = (2, 2) model :

string 1 string 2

vacuum 2vacuum 1

4D

2D

kink

monopole

Mkink = Mmonopole

independent on ξ.



Kink masses

MBPS
ll ′ = 2 |WCP(σp′)−WCP(σl)| , l , l ′ = 1, ...,N

Compare with monopole masses

Mmonopole
ll ′ =

∣∣∣∣∣
√
2

2πi

∮
βll′

dλSW

∣∣∣∣∣ , l , l ′ = 1, ....N

Mmonopole
ll ′ = Mkink

ll ′ , l , l ′ = 1, ...,N

Dorey 1998
Shifman Yung 2004
Hanany Tong 2004



Example in U(2)
U(2) gauge theory with Nf = 2
Exact formula for the kink mass

Mkink
r=N =

∣∣∣∣∣ 12π
{
∆m ln

∆m +
√

∆m2 + 4Λ2
CP

∆m −
√
∆m2 + 4Λ2

CP

− 2
√

∆m2 + 4Λ2
CP

}∣∣∣∣∣ ,
where ∆m = m1 −m2



Confined monopoles = kinks
are stabilized by quantum (non-perturbative)
effects in CP(N − 1) model on the string

worldsheet

Consider non-Abelian regime (mA −mB) → 0
Classical picture

MM =
4π(mℓ0+1 −mℓ0)

g 2
2

→ 0

monopole size ∼ ∆m−1 → ∞
Classically monopole disappear



Quantum picture
SU(N)C+F global symmetry is unbroken
Mass gap ∼ ΛCP no massless states (⟨|n|2⟩ = 0)

Mmonopole = Mkink ∼ ΛCP

monopole size ∼ Λ−1
CP

ξ 1/2-

Λ -1



Physical picture of monopole confinement

Monopole-antimonopole meson.

Witten 1989
kink ∼ nl at strong coupling
Monopole (anti-monopole) = kink (anti-kink) is in the
fundamental (anti-fundamental) representation of global
”flavor”SU(N)C+F



Baryons

ΦSU(N) =

∫
d2x F

∗SU(N)
3 = 2π

(
n · n∗ − 1

N

)
, nl = δll0

∑
l0

Φ
SU(N)
l0

= 0

Therefore N different strings can form a closed configuration

ba



Instead-of-confinement phase

Meson

Constituent quark = monopole

At weak coupling these mesons are heavy and decay into
screened quarks and gluons
What about strong coupling?



Curves (walls) of marginal stability in 2D

Example in CP(1)

ZBPS
kink = mDT + i∆mq, MBPS

kink = |ZBPS
kink |

T is the topologikal charge T = 0,±1,
q is the global charge; SU(2)C+F → U(1), q = ±1

2
,±1, ...

Decay 3→ 1+2,

T3 = T1 + T2, q3 = q1 + q2, Z3 = Z1 + Z2

Curve of marginal stabilility

Re
mD

∆m
= 0

In particular, perturbative state with T3 = 0, q3 = 1 decay at
kink T1 = 1, q1 =

1
2
and antikink T2 = −1, q2 =

1
2
at

Re
Z1

∆m
= 0



Curves (walls) of marginal stability

β = Re β + i
θ2D
2π

, 2πβ = 2 log

(
m1 −m2

ΛCP

)



Weak coupling Strong coupling

perturbative state kink anti-kink

quark or gluon monopole anti-monopole



Question: Does these monopole-antimonopole mesons
look like mesons in QCD?

▶ Correct flavor quantum numbers (adjoint + singlet)

▶ Lie on Regge tragectories

Instead-of-confinement phase is a new phase of asymptotically
free non-Abelian gauge theories

besides Higgs and confinement phases known previously

Looks very close to what we observe in the real-world QCD
constituent quark = monopole



From non-Abelian vortices to critical superstrings
S

Shifman and Yung, 2015 Idea:
Non-Abelian vortex string has more moduli then
Abrikosov-Nielsen-Olesen (ANO) vortex string.

It has translational + orientaional and size moduli: x
(0)
µ (σ, τ)

and nl(σ, τ), ρk(σ, τ)

We can fulfill the criticality condition: 4+6=10
▶ The solitonic non-Abelian vortex have six orientational

and size moduli, which, together with four translational
moduli, form a ten-dimensional space (N = 2, Nf = 4).

▶ For Nf = 2N 2D world sheet theory on the string is
conformal.



For U(N = 2) gauge group and Nf = 2 the world sheet theory
is 2D O(3) sigma model, O(3) = CP(1)
For N = 2 and Nf = 4 the world sheet theory is weighted
CP(2, 2) model.
The target space of the weighted CP(2, 2) model is a
non-compact Calabi-Yau manifold studied by Candelas, Witten
and Vafa, namely

conifold.



Our goal:
Study states of closed string propagating on

R4 × Y6, Y6 = conifold

and interpret them as hadrons in 4D N = 2 QCD.



Spectrum of spin-0 and spin-2 states as a function of the
baryonic charge. Closed and open circles denote spin-0 and
spin-2 states, respectively.
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Conclusions
▶ Worldsheet internal dynamics of non-Abelian string in

U(N) gauge theory with Nf = N flavors is described by
CP(N − 1) model

▶ Non-Abelian confined monopole = CP(N − 1) kink

▶ 2D-4D correspondence: exact BPS spectrum in quark
vacuum of N = 2 4D Seiberg-Witten theory coincides
with BPS spectrum of N = (2, 2) 2D CP(N − 1) model

▶ In quark vacuum we have
”Instead-of-confinement” phase
Higgs-screened quarks and gauge bosons evolve into
monopole-antimonopole stringy mesons.

▶ “Instead-of-confinement” phase is rather close to what we
observe in the real-world QCD.

▶ For N = 2, Nf = 4 non-Abelian vortex behaves as a
critical superstring


