# Резонансы в фотоннокристаллических слоях: фундаментальные основы и применения

Сергей Дьяков



Natalia Salakhova

phd student



Ilia Smagin

phd student

Ilia Fradkin research scientist



Sergey Dyakov associate professor



Nikolay Gippius professor

# Skoltech

Группа теоретической нанофотоники

# Часть 1 Фурье-модальный метод

# Фурье-модальный метод





# Уравнения Максвелла

бесконечно толстый слой с бесконечным числом периодов



$$\nabla \times \vec{H}(\vec{r},t) - \frac{1}{c} \frac{\partial \vec{D}(\vec{r},t)}{\partial t} = \frac{4\pi}{c} \vec{j}(\vec{r},t)$$
$$\nabla \times \vec{E}(\vec{r},t) + \frac{1}{c} \frac{\partial \vec{B}(\vec{r},t)}{\partial t} = 0$$
$$\nabla \vec{B}(\vec{r},t) = 0$$
$$\nabla \vec{D}(\vec{r},t) = 4\pi \varrho(\vec{r},t)$$

$$\vec{E}(\vec{r},t) = \int_{-\infty}^{\infty} \vec{E}(\vec{r},\omega) e^{-i\omega t} \mathrm{d}\omega$$

$$\vec{D}(\vec{r},\omega) = \hat{\varepsilon}(\vec{r},\omega)\vec{E}(\vec{r},\omega)$$
$$\vec{B}(\vec{r},\omega) = \hat{\mu}(\vec{r},\omega)\vec{H}(\vec{r},\omega)$$

$$\nabla \times \vec{E}(\vec{r},\omega) = +ik_0\mu\vec{H}(\vec{r},\omega)$$
$$\nabla \times \vec{H}(\vec{r},\omega) = -ik_0\varepsilon\vec{E}(\vec{r},\omega) + \frac{4\pi}{c}\vec{j}(\vec{r},\omega)$$

# Вид решений уравнений Максвелла в периодическом слое





$$\nabla \times \vec{E}(\vec{r},\omega) = +ik_0\mu\vec{H}(\vec{r},\omega)$$
$$\nabla \times \vec{H}(\vec{r},\omega) = -ik_0\varepsilon\vec{E}(\vec{r},\omega) + \frac{4\pi}{c}\vec{j}(\vec{r},\omega).$$

$$\varepsilon(\boldsymbol{\rho} + m_1\boldsymbol{a}_1 + m_2\boldsymbol{a}_2) = \varepsilon(\boldsymbol{\rho})$$
$$\mu(\boldsymbol{\rho} + m_1\boldsymbol{a}_1 + m_2\boldsymbol{a}_2) = \mu(\boldsymbol{\rho})$$

Теорема Блоха:

$$E_{\alpha}(\boldsymbol{\rho}, z, \omega) = \tilde{E}_{\alpha}(\boldsymbol{\rho}, z, \omega) e^{i\boldsymbol{\kappa}\boldsymbol{\rho}}$$
$$H_{\alpha}(\boldsymbol{\rho}, z, \omega) = \tilde{H}_{\alpha}(\boldsymbol{\rho}, z, \omega) e^{i\boldsymbol{\kappa}\boldsymbol{\rho}}$$



$$egin{aligned} E_lpha(oldsymbol{
ho},z,\omega) &= \sum_\gamma \mathrm{E}_{lpha\gamma}(z,\omega) e^{i(\kappa+g_\gamma)
ho}, \ H_lpha(oldsymbol{
ho},z,\omega) &= \sum_\gamma \mathrm{H}_{lpha\gamma}(z,\omega) e^{i(\kappa+g_\gamma)
ho}, \ _lpha$$
набор бесконечного числа фурье-компонент $g_\gamma &= [g_x^{(\gamma)},g_y^{(\gamma)}] &$ ү-тая гармоника

### 26.07.2024

### Летняя школа фонда «Базис»

# Гармоники в пространстве волновых векторов

Базисные вектора обратной решетки в Кпространстве

$$\boldsymbol{b}_1 = \frac{2\pi \mathbf{R} \boldsymbol{a}_2}{(\boldsymbol{a}_1 \cdot \mathbf{R} \boldsymbol{a}_2)}, \qquad \boldsymbol{b}_2 = \frac{2\pi \mathbf{R} \boldsymbol{a}_1}{(\boldsymbol{a}_2 \cdot \mathbf{R} \boldsymbol{a}_1)},$$

R – матрица поворота на угол 90°

для практических расчетов выбирается конечное число гармоник

# (a)

### (c)



### (b)



### (d)

### 26.07.2024

### Летняя школа фонда «Базис»



# Уравнения Максвелла в периодическом слое



распространяющихся плоских волн:  $F(z) = Fe^{ik_z z}$ 

Задача на собственные значения  $\ \mathbb{C}\mathrm{F}=k_{z}\mathrm{F}$ 

$$\mathbb{C}_{11} = k_0 \begin{bmatrix} -\tilde{\mu}_{23}K_y - K_x\tilde{\varepsilon}_{31} & +\tilde{\mu}_{23}K_x - K_x\tilde{\varepsilon}_{32} \\ +\tilde{\mu}_{13}K_y - K_y\tilde{\varepsilon}_{31} & -\tilde{\mu}_{13}K_x - K_y\tilde{\varepsilon}_{32} \end{bmatrix}$$
$$\mathbb{C}_{12} = k_0 \begin{bmatrix} +\tilde{\mu}_{21} + K_x\tilde{\varepsilon}_{33}K_y & +\tilde{\mu}_{22} - K_x\tilde{\varepsilon}_{33}K_x \\ -\tilde{\mu}_{11} + K_y\tilde{\varepsilon}_{33}K_y & -\tilde{\mu}_{12} - K_y\tilde{\varepsilon}_{33}K_x \end{bmatrix}$$
$$\mathbb{C}_{21} = k_0 \begin{bmatrix} -\tilde{\varepsilon}_{21} - K_x\tilde{\mu}_{33}K_y & -\tilde{\varepsilon}_{22} + K_x\tilde{\mu}_{33}K_x \\ +\tilde{\varepsilon}_{11} - K_y\tilde{\mu}_{33}K_y & +\tilde{\varepsilon}_{12} + K_y\tilde{\mu}_{33}K_x \end{bmatrix}$$
$$\mathbb{C}_{22} = k_0 \begin{bmatrix} -\tilde{\varepsilon}_{23}K_y - K_x\tilde{\mu}_{31} & +\tilde{\varepsilon}_{23}K_x - K_x\tilde{\mu}_{32} \\ +\tilde{\varepsilon}_{13}K_y - K_y\tilde{\mu}_{31} & -\tilde{\varepsilon}_{13}K_x - K_y\tilde{\mu}_{32} \end{bmatrix}$$

$$\mathbf{F}(z) = \begin{bmatrix} \mathbf{E}_x(z) \\ \mathbf{E}_y(z) \\ \mathbf{H}_x(z) \\ \mathbf{H}_y(z) \end{bmatrix}, \qquad \mathbf{J}(z) = \begin{bmatrix} -K_x \tilde{\varepsilon}^{33} \mathbf{J}_z(z) \\ -K_y \tilde{\varepsilon}^{33} \mathbf{J}_z(z) \\ -i \mathbf{J}_y(z) + i \tilde{\varepsilon}^{23} \mathbf{J}_z(z) \\ +i \mathbf{J}_x(z) - i \tilde{\varepsilon}^{13} \mathbf{J}_z(z) \end{bmatrix}$$

Вектор Фурье-компонент тока

7/49

Вектор Фурье-компонент полей

Сергей Дьяков

### Летняя школа фонда «Базис»

26.07.2024

# Уравнения Максвелла в периодическом слое



распространяющихся плоских волн:  $F(z) = Fe^{ik_z z}$ 

Задача на собственные значения  $\ \mathbb{C}\mathrm{F}=k_{z}\mathrm{F}$ 

26.07.2024

$$\mathbb{C}_{11} = k_0 \begin{bmatrix} -\tilde{\mu}_{23}K_y - K_x\tilde{\varepsilon}_{31} & +\tilde{\mu}_{23}K_x - K_x\tilde{\varepsilon}_{32} \\ +\tilde{\mu}_{13}K_y - K_y\tilde{\varepsilon}_{31} & -\tilde{\mu}_{13}K_x - K_y\tilde{\varepsilon}_{32} \end{bmatrix}$$
$$\mathbb{C}_{12} = k_0 \begin{bmatrix} +\tilde{\mu}_{21} + K_x\tilde{\varepsilon}_{33}K_y & +\tilde{\mu}_{22} - K_x\tilde{\varepsilon}_{33}K_x \\ -\tilde{\mu}_{11} + K_y\tilde{\varepsilon}_{33}K_y & -\tilde{\mu}_{12} - K_y\tilde{\varepsilon}_{33}K_x \end{bmatrix}$$
$$\mathbb{C}_{21} = k_0 \begin{bmatrix} -\tilde{\varepsilon}_{21} - K_x\tilde{\mu}_{33}K_y & -\tilde{\varepsilon}_{22} + K_x\tilde{\mu}_{33}K_x \\ +\tilde{\varepsilon}_{11} - K_y\tilde{\mu}_{33}K_y & +\tilde{\varepsilon}_{12} + K_y\tilde{\mu}_{33}K_x \end{bmatrix}$$
$$\mathbb{C}_{22} = k_0 \begin{bmatrix} -\tilde{\varepsilon}_{23}K_y - K_x\tilde{\mu}_{31} & +\tilde{\varepsilon}_{23}K_x - K_x\tilde{\mu}_{32} \\ +\tilde{\varepsilon}_{13}K_y - K_y\tilde{\mu}_{31} & -\tilde{\varepsilon}_{13}K_x - K_y\tilde{\mu}_{32} \end{bmatrix}$$

$$K_x = \frac{1}{k_0} \begin{bmatrix} k_x + g_x^{(1)} & 0 & \cdots \\ 0 & k_x + g_x^{(2)} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

диагональная матрица проекций волнывых векторов гармоник

### Летняя школа фонда «Базис»

# Фурье-разложение диэлектрической функции



Для улучшения сходимости необходимо использовать правила факторизации.



разбиение слоя на элементарные фигуры

### 26.07.2024

### Летняя школа фонда «Базис»

# Общее решение задачи на собственные значения



Общее решение задачи на собственные значения

$$\mathbf{F}(z) = \mathbb{F}\mathbf{A}(z) \equiv \mathbb{F}\begin{bmatrix} \vec{\mathbf{d}}(z) \\ \vec{\mathbf{u}}(z) \end{bmatrix}$$

вектор амплитуд

- Собственные векторы оператора С могут
   соответствовать решениям, распространяющимся
   в положительном и отрицательном z-направлении

 $\mathbb{F} \equiv [F_1 \ F_2 \ F_3 \ \cdots]$ 

 Конкретное частное решение определяется граничными условиями



### Летняя школа фонда «Базис»

10/49

# Связь решений задачи на собственные значения

$$A(z_1) = \mathbb{T}(z_1, z_2)A(z_2) \qquad \Longleftrightarrow \qquad \begin{bmatrix} \dot{d}(z_2) \\ \vec{u}(z_2) \end{bmatrix} = \mathbb{T}(z_1, z_2) \begin{bmatrix} \dot{d}(z_1) \\ \vec{u}(z_1) \end{bmatrix}$$

F ----

-



### Летняя школа фонда «Базис»

Сергей Дьяков

F ----

# Прохождение через слой: матрица переноса

$$\begin{bmatrix} \vec{\mathbf{d}}(z_2) \\ \vec{\mathbf{u}}(z_2) \end{bmatrix} = \mathbb{T}(z_1, z_2) \begin{bmatrix} \vec{\mathbf{d}}(z_1) \\ \vec{\mathbf{u}}(z_1) \end{bmatrix}$$

### матрица переноса при прохождении через слой

$$\mathbb{T}(z_1, z_2) = \begin{bmatrix} e^{iK_z^s(z_2 - z_1)} & 0\\ 0 & e^{-iK_z^s(z_2 - z_1)} \end{bmatrix}$$

в поглощающих слоях 
$$k_z = k_z' + i k_z''$$

### схема численно нестабильна



. . .

# Прохождение через слой: матрица рассеяния

$$\begin{bmatrix} \vec{\mathbf{d}}(z_2) \\ \vec{\mathbf{u}}(z_1) \end{bmatrix} = \mathbb{S}(z_1, z_2) \begin{bmatrix} \vec{\mathbf{d}}(z_1) \\ \vec{\mathbf{u}}(z_2) \end{bmatrix}$$

матрица рассеяния при прохождении через слой

$$\mathbb{S}(z_1, z_2) = \begin{bmatrix} e^{iK_z^s(z_2 - z_1)} & 0\\ 0 & e^{iK_z^s(z_2 - z_1)} \end{bmatrix}$$

в поглощающих слоях $k_z=k_z^\prime+ik_z^{\prime\prime}$ 

### схема численно стабильна



26.07.2024

### Летняя школа фонда «Базис»

# Прохождение через интерфейс



 $\mathbf{d}(z_s - 0) \underbrace{\varepsilon_{s-1}}_{\varepsilon_s} \mathbf{u}(z_s - 0) \mathbf{u}(z_s - 0)}_{\varepsilon_s} z_{s-1} z_s$ 

$$F(z_0 - 0) = F(z_0 + 0)$$

$$\mathbb{F}_{j-1}\mathcal{A}(z_0-0) = \mathbb{F}_j\mathcal{A}(z_0+0)$$

$$\begin{bmatrix} \vec{\mathbf{d}}(z_0+0) \\ \vec{\mathbf{u}}(z_0+0) \end{bmatrix} = \mathbb{F}_j^{-1} \mathbb{F}_{j-1} \begin{bmatrix} \vec{\mathbf{d}}(z_0-0) \\ \vec{\mathbf{u}}(z_0-0) \end{bmatrix}$$

матрица прохождения через интерфейс в формализме оператора переноса

$$\mathbb{S} = \begin{bmatrix} \mathbb{S}_{11} & \mathbb{S}_{12} \\ \mathbb{S}_{21} & \mathbb{S}_{22} \end{bmatrix} = \begin{bmatrix} \mathbb{T}_{11} & -\mathbb{T}_{12}\mathbb{T}_{22}^{-1}\mathbb{T}_{21} & \mathbb{T}_{12}\mathbb{T}_{22}^{-1} \\ \mathbb{T}_{22}^{-1}\mathbb{T}_{21} & \mathbb{T}_{22}^{-1} \end{bmatrix}$$

### 26.07.2024

### Летняя школа фонда «Базис»

# Полная матрица рассеяния



$$\begin{bmatrix} \vec{\mathbf{d}}_b \\ \vec{\mathbf{u}}_a \end{bmatrix} = \mathbb{S}_{\text{tot}} \begin{bmatrix} \vec{\mathbf{d}}_a \\ \vec{\mathbf{u}}_b \end{bmatrix}$$

$$\begin{bmatrix} \vec{d}(z_N + 0) \\ \vec{u}(z_0 - 0) \end{bmatrix} = \mathbb{S}(z_0 - 0, z_N + 0) \begin{bmatrix} \vec{d}(z_0 - 0) \\ \vec{u}(z_N + 0) \end{bmatrix}$$

Полная матрица рассеяния

- учитывает многократное отражение плоских волн от границ раздела слоев, набег фазы на толщинах слоев и непрерывность тангенциальных компонент полей.
- о находится при помощи итерационной процедуры

### Летняя школа фонда «Базис»

# Расчет полной матрицы рассеяния



$$\mathbb{S}(0-0,0-0) = \mathcal{I}$$

Вводя обозначение

$$\mathbb{I}_{s-1,s} \equiv \mathbb{S}(z_s - 0, z_s + 0)$$
$$\mathbb{P}_s \equiv \mathbb{S}(z_{s-1} + 0, z_s - 0),$$

получим компактное выражение для полной матрицы рассеяния:

$$\mathbb{S}_{tot} = \mathbb{I}_{a1} \otimes \mathbb{P}_1 \otimes \mathbb{I}_{12} \otimes \mathbb{P}_{12} \cdots \mathbb{P}_{N-1,N} \otimes \mathbb{I}_{Nb},$$

где оператор ⊗ обозначает объединение двух матриц рассеяния, который определяется следующим образом:

$$\mathbb{S} = \mathbb{S}^{a} \otimes \mathbb{S}^{b} = \begin{bmatrix} \mathbb{S}_{11}^{b} \left( \mathcal{I} - \mathbb{S}_{12}^{a} \mathbb{S}_{21}^{b} \right)^{-1} \mathbb{S}_{11}^{a} & \mathbb{S}_{12}^{b} + \mathbb{S}_{11}^{b} \left( \mathcal{I} - \mathbb{S}_{12}^{a} \mathbb{S}_{21}^{b} \right)^{-1} \mathbb{S}_{12}^{a} \mathbb{S}_{22}^{b} \\ \mathbb{S}_{21}^{a} + \mathbb{S}_{22}^{a} \left( \mathcal{I} - \mathbb{S}_{21}^{b} \mathbb{S}_{12}^{a} \right)^{-1} \mathbb{S}_{21}^{b} \mathbb{S}_{11}^{a} & \mathbb{S}_{22}^{a} \left( \mathcal{I} - \mathbb{S}_{21}^{b} \mathbb{S}_{12}^{a} \right)^{-1} \mathbb{S}_{22}^{b} \end{bmatrix}$$

### Летняя школа фонда «Базис»

# Расчет коэффицентов отражения, пропускания и поглощения



$$\begin{bmatrix} \vec{\mathbf{d}}_b \\ \vec{\mathbf{u}}_a \end{bmatrix} = \mathbb{S}(z_1, z_2) \begin{bmatrix} \vec{\mathbf{d}}_a \\ \vec{\mathbf{o}} \end{bmatrix}$$

Падающий вектор амплитуд



Отраженный и прошедший вектора Фурьекомпонент



 $R = -\frac{\mathbf{S}_z^{\text{ref}}}{\mathbf{S}_z^{\text{inc}}},$  $T = \frac{\mathbf{S}_z^{\text{trans}}}{\mathbf{S}_z^{\text{inc}}},$ 

 $\mathbf{S}_z \equiv \frac{c}{8\pi} \operatorname{Re}\left(\left[\vec{E} \times \vec{H}^*\right]\right)_z$ 

 $= \frac{c}{8\pi} \operatorname{Re} \left( \mathbf{E}_x^{\dagger} \mathbf{H}_y + \mathbf{E}_x \mathbf{H}_y^{\dagger} \cdot - \mathbf{E}_y^{\dagger} \mathbf{H}_x - \mathbf{E}_y \mathbf{H}_x^{\dagger} \right)$ 

### 26.07.2024

### Летняя школа фонда «Базис»

# Каналы дифракции



# Расчет распределения электромагнитного поля



# Расчет распределения электромагнитного поля



### Летняя школа фонда «Базис»

# Расчет излучения осциллирующих токов



# Расчет интенсивности излучения осциллирующих токов



Вектора амплитуд внутри структуры

$$\begin{bmatrix} \vec{d}_1 \\ \vec{u}_1 \end{bmatrix} = \begin{bmatrix} \mathbb{S}_{12}^{u} \left( \mathbb{S}_{21}^{d} \mathbb{S}_{12}^{u} - \mathcal{I} \right)^{-1} \left( \vec{j}_d - \mathbb{S}_{21}^{d} \vec{j}_u \right) \\ \left( \mathbb{S}_{21}^{d} \mathbb{S}_{12}^{u} - \mathcal{I} \right)^{-1} \left( \vec{j}_d - \mathbb{S}_{21}^{d} \vec{j}_u \right) \end{bmatrix}$$
$$\begin{bmatrix} \vec{d}_2 \\ \vec{u}_2 \end{bmatrix} = \begin{bmatrix} \left( \mathcal{I} - \mathbb{S}_{12}^{u} \mathbb{S}_{21}^{d} \right)^{-1} \left( \vec{j}_u - \mathbb{S}_{12}^{u} \vec{j}_d \right) \\ \mathbb{S}_{21}^{d} \left( \mathcal{I} - \mathbb{S}_{12}^{u} \mathbb{S}_{21}^{d} \right)^{-1} \left( \vec{j}_u - \mathbb{S}_{12}^{u} \vec{j}_d \right) \end{bmatrix}$$

Вектора амплитуд вне структуры

$$\begin{bmatrix} \vec{\mathbf{d}}_a \\ \vec{\mathbf{u}}_a \end{bmatrix} = \begin{bmatrix} \vec{\mathbf{o}} \\ \mathbb{S}_{22}^{\mathbf{u}} \left( \mathbb{S}_{21}^{\mathbf{d}} \mathbb{S}_{12}^{\mathbf{u}} - \mathcal{I} \right)^{-1} \left( \vec{\mathbf{j}}_d - \mathbb{S}_{21}^{\mathbf{d}} \vec{\mathbf{j}}_u \right) \end{bmatrix}$$
$$\begin{bmatrix} \vec{\mathbf{d}}_b \\ \vec{\mathbf{u}}_b \end{bmatrix} = \begin{bmatrix} \mathbb{S}_{11}^{\mathbf{d}} \left( \mathcal{I} - \mathbb{S}_{12}^{\mathbf{u}} \mathbb{S}_{21}^{\mathbf{d}} \right)^{-1} \left( \vec{\mathbf{j}}_u - \mathbb{S}_{12}^{\mathbf{u}} \vec{\mathbf{j}}_d \right) \\ \vec{\mathbf{o}} \end{bmatrix}$$

$$\vec{j}(\vec{r},\omega) = \vec{j}(\omega)\delta(\vec{r}-\vec{r}_{\rm d})$$
$$\mathbf{J}_{\alpha} = j_{\alpha}e^{-i\rho_d\left(\kappa + g^{(m)}\right)}$$

гипервектор фурье-компонент полей имеет разрыв

$$\begin{bmatrix} \mathbf{E}_{x} \\ \mathbf{E}_{y} \\ \mathbf{H}_{x} \\ \mathbf{H}_{y} \end{bmatrix}_{2} - \begin{bmatrix} \mathbf{E}_{x} \\ \mathbf{E}_{y} \\ \mathbf{H}_{x} \\ \mathbf{H}_{y} \end{bmatrix}_{1} = \begin{bmatrix} -K_{x} \hat{\varepsilon}^{33} \mathbf{J}_{z} \\ -K_{y} \hat{\varepsilon}^{33} \mathbf{J}_{z} \\ -i \mathbf{J}_{y} + i \hat{\varepsilon}^{23} \mathbf{J}_{z} \\ -i \mathbf{J}_{x} - i \hat{\varepsilon}^{13} \mathbf{J}_{z} \end{bmatrix}$$

вектор амплитуд имеет разрыв

$$\begin{bmatrix} \mathbf{E}_{x} \\ \mathbf{E}_{y} \\ \mathbf{H}_{x} \\ \mathbf{H}_{y} \end{bmatrix} - \begin{bmatrix} \mathbf{E}_{x} \\ \mathbf{E}_{y} \\ \mathbf{H}_{x} \\ \mathbf{H}_{y} \end{bmatrix} = \begin{bmatrix} -K_{x} \tilde{\varepsilon}^{33} \mathbf{J}_{z} \\ -K_{y} \tilde{\varepsilon}^{33} \mathbf{J}_{z} \\ -i \mathbf{J}_{y} + i \tilde{\varepsilon}^{23} \mathbf{J}_{z} \\ +i \mathbf{J}_{x} - i \tilde{\varepsilon}^{13} \mathbf{J}_{z} \end{bmatrix}$$





 $\begin{vmatrix} \dot{d}_2 \\ \vec{u}_2 \end{vmatrix} - \begin{vmatrix} \dot{d}_1 \\ \vec{u}_1 \end{vmatrix} = \begin{vmatrix} \dot{j}_d \\ \vec{j}_u \end{vmatrix} \equiv \mathbb{F}^{-1} \mathbf{J}$ 





 $\varepsilon_{b}$ 

 $\varepsilon_a$ 

. . .

do

. . .

 $\mathbf{d}_b$ 

Su

Sd

 $\mathbf{u}_a$ 

**U**9

 $z_0$ 

 $z_d$ 

# Расчет полей осциллирующих токов



Для того, чтобы найти амплитуды излученных диполем плоских волн в произвольной координате  $z_c$ , такой что  $z_c \neq z_d$ , нужно дополнительно использовать связь между амплитудами плоских волн в этой координате с амплитудами  $\vec{d}_{1,2}$ ,  $\vec{u}_{1,2}$ ,  $\vec{d}_b$  и  $\vec{u}_a$ :

$$\begin{cases} \begin{bmatrix} \vec{d}_c \\ \vec{u}_a \end{bmatrix} = \mathbb{W}^u \begin{bmatrix} \vec{o} \\ \vec{u}_c \end{bmatrix}, & \begin{bmatrix} \vec{d}_1 \\ \vec{u}_c \end{bmatrix} = \mathbb{W}^b \begin{bmatrix} \vec{d}_c \\ \vec{u}_1 \end{bmatrix}, & \text{для } z_c < z_d, \\ \begin{bmatrix} \vec{d}_c \\ \vec{u}_2 \end{bmatrix} = \mathbb{W}^u \begin{bmatrix} \vec{d}_2 \\ \vec{u}_c \end{bmatrix}, & \begin{bmatrix} \vec{d}_b \\ \vec{u}_c \end{bmatrix} = \mathbb{W}^b \begin{bmatrix} \vec{d}_c \\ \vec{o} \end{bmatrix}, & \text{для } z_c > z_d, \end{cases}$$
(1.71)

где сделаны следующие обозначения:

$$\begin{cases} \mathbb{W}^{\mathrm{u}} \equiv \mathbb{S}(z_0 - 0, z_c), & \mathbb{W}^{\mathrm{d}} \equiv \mathbb{S}(z_c, z_d - 0), & \text{для } z_c < z_d, \\ \mathbb{W}^{\mathrm{u}} \equiv \mathbb{S}(z_d + 0, z_c), & \mathbb{W}^{\mathrm{d}} \equiv \mathbb{S}(z_c, z_N + 0), & \text{для } z_c > z_d. \end{cases}$$
(1.72)

# Расчет полей осциллирующих токов



Можно показать, что вектор амплитуд  $A(z_c) = \begin{bmatrix} \vec{d}_c, \vec{u}_c \end{bmatrix}^T$  находится при помощи решения следующей переопределенной системы уравнений:

$$\begin{cases} \begin{bmatrix} \mathcal{I} & -\mathbb{W}_{12}^{u} \\ \mathcal{O} & +\mathbb{W}_{22}^{u} \\ \mathbb{W}_{11}^{d} & \mathcal{O} \\ \mathbb{W}_{21}^{d} & -\mathcal{I} \end{bmatrix} \begin{bmatrix} \vec{d}_{c} \\ \vec{u}_{c} \end{bmatrix} = \begin{bmatrix} \vec{O} \\ \mathbb{S}_{22}^{u}\vec{u}_{1} \\ (\mathbb{S}_{12}^{u} - \mathbb{W}_{12}^{d}) \vec{u}_{1} \\ -\mathbb{W}_{22}^{d}\vec{u}_{1} \end{bmatrix} \quad \text{ДЛЯ } z_{c} < z_{d}, \\ \begin{bmatrix} \mathcal{I} & -\mathbb{W}_{12}^{u} \\ \mathcal{O} & +\mathbb{W}_{22}^{u} \\ \mathbb{W}_{11}^{d} & \mathcal{O} \\ \mathbb{W}_{21}^{d} & -\mathcal{I} \end{bmatrix} \begin{bmatrix} \vec{d}_{c} \\ \vec{u}_{c} \end{bmatrix} = \begin{bmatrix} +\mathbb{W}_{11}^{u}\vec{d}_{2} \\ (\mathbb{S}_{21}^{d} - \mathbb{W}_{21}^{u}) \vec{d}_{2} \\ \mathbb{S}_{11}^{d}\vec{d}_{2} \\ \vec{O} \end{bmatrix} \quad \text{ДЛЯ } z_{c} > z_{d}, \end{cases}$$
(1.73)

где согласно формуле (1.67)

$$\begin{cases} \vec{\mathrm{u}}_1 = \left(\mathbb{S}_{21}^{\mathrm{d}}\mathbb{S}_{12}^{\mathrm{u}} - \mathcal{I}\right)^{-1} \left(\vec{\mathrm{j}}_{\mathrm{d}} - \mathbb{S}_{21}^{\mathrm{d}}\vec{\mathrm{j}}_{\mathrm{u}}\right) & \text{для } z_c < z_d \\ \vec{\mathrm{d}}_2 = \left(\mathcal{I} - \mathbb{S}_{12}^{\mathrm{u}}\mathbb{S}_{21}^{\mathrm{d}}\right)^{-1} \left(\vec{\mathrm{j}}_{\mathrm{u}} - \mathbb{S}_{12}^{\mathrm{u}}\vec{\mathrm{j}}_{\mathrm{d}}\right) & \text{для } z_c > z_d \end{cases}$$
(1.74)

# Расчет фактора Парселла в ФК периодическом слое

Определение  $F_p = rac{\Gamma_{
m rad}^{
m cav}}{\Gamma_{
m o}^{
m o}}$ 

Скорость рекомбинации спонтанной эмиссии в диэлектричексом окружении:

 $\Gamma = \Gamma_{\rm rad}^{\rm cav} + \Gamma_{\rm nr} = F_p \Gamma_{\rm rad}^{\rm o} + \Gamma_{\rm nr}$ 

скорость излучательной рекомбинаци

скорость безызлучательной рекомбинации

Практическое вычисление фактора Парселла:

$$F_p(\omega) = \frac{P^{\text{cav}}(\omega)}{P(\omega)}$$

диполь в однородной диполь в произвольном среде окружении  $P(\omega) = \frac{|\vec{j}_{o}|^{2}\omega^{2}n}{3c^{3}} \qquad P^{cav}(\omega) = \oint \vec{S}(\omega) d\vec{A},$ полный фактор диполь в многослойной среде Парселла  $P^{\pm}(\omega, z) \equiv \iint S_z^{\pm}(\omega, \vec{\rho}, z) \mathrm{d}^2 \vec{\rho}.$  $P^{\pm}(\omega, z) \equiv \iint \mathbf{S}_{z}^{\pm}(\omega, \vec{q}, z) \frac{\mathrm{d}^{2}\vec{q}}{(2\pi)^{2}}$ FBZ



внешний фактор Парселла



 $S_z^-$ 

 $S^+_{\gamma}$ 

$$F_p(\omega) = \frac{3c^3}{|j_0|^2 \omega^2 n} \iint_{\text{FBZ}} \left[ \mathbf{S}_z^+(\omega, \vec{q}) + \mathbf{S}_z^-(\omega, \vec{q}) \right] \frac{\mathrm{d}^2 \vec{q}}{(2\pi)^2}$$

### Совещание по ФТТ, Санкт-Петербург, 19 мая 2023

# Расчет фактора Парселла

Фактор Парселла в однородном слое

Фактор Парселла в периодическом слое



$$F_p(\omega) = \frac{3c^3}{|j_0|^2\omega^2 n} \iint_{-\infty}^{\infty} \left[ \mathbf{S}_z^+(\omega, k_x, k_y) + \mathbf{S}_z^-(\omega, k_x, k_y) \right] \mathrm{d}k_x \mathrm{d}k_y$$

$$F_p(\omega) = \frac{3c^3}{|j_0|^2\omega^2 n} \iint_{\text{FBZ}} \left[ S_z^+(\omega, k_x, k_y) + S_z^-(\omega, k_x, k_y) \right] \mathrm{d}k_x \mathrm{d}k_y$$



26.07.2024 Летняя школа фонда «Базис»

Сергей Дьяков

.

26/49

# Расчет резонансов послойно-периодической структуры



 $\mathbb{S}^{-1}(\omega) = \mathbb{S}^{-1}(\omega_n) + \frac{\mathrm{d}\mathbb{S}(\omega)}{\mathrm{d}\omega}\bigg|_{\omega=\omega_n} (\omega - \omega_n).$ (1.78)

Находя нули линейной относительно  $\omega$  правой части этого выражения, можно получить значение  $\omega_{n+1}$  для следующего шага итерации. Для этого необходимо рассмотреть правую часть как обобщенную задачу на собственные значения, в которой ( $\omega - \omega_n$ ) будет играть роль собственного значения:

$$\mathbb{S}^{-1}(\omega_n)\mathcal{B}_{\text{out}} = -\left.\frac{\mathrm{d}\mathbb{S}(\omega)}{\mathrm{d}\omega}\right|_{\omega=\omega_n} (\omega-\omega_n)\mathcal{B}_{\text{out}}$$
(1.79)

 $B_{out} = \mathbb{S}(\omega, k_x, k_y)B_{in}$  $\mathbb{S}^{-1}(\omega, k_x, k_y)B_{out} = O$ 

# Часть 2 Излучение Ge наноостровков из кремниевого фотонно-кристаллического волновода



Sergei Tikhodeev



Nikolay Gippius



Andrey Bogdanov



Margarita Stepikhova



Yurasov

Alexey Novikov

Skoltech IPM RAS, Nizhniy Novgorod ITMO, St. Petersburg

# Мотивация



В структурах с Ge наноостровками наблюдается фотолюминесценция при комнатной температуре на длинах волн 1.3–1.6 мкм (0.75–0.95 мкм).

Важным преимуществом Ge наноостровков является то, что они могут быть точно расположены в горячих точках квазиволноводных мод в фотонных структурах.

Периодические фотонные структуры без полостей могут поддерживать состояния с высокой добротностью с профилем моды, однородно распределенным по всей фотонной структуре.

# Изготовление ФК слоев с германиевыми наноостровками

Многослойная структура, содержащая 5 периодов слоев наноостровков Ge(Si), с промежуточными слоями Si:

- Si слой d=50 нм
- 5 x (Si, d=15 нм / Ge, d=8MC)
- Si буферный слой, d=50 нм

Эпитаксиальный рост проводился на утоньшенной подложке SOI (приборный слой подложки утоньшался до 90 нм). Суммарная толщина волноводного слоя ~ 250 нм.



### Толщина волноводного слоя ~ 250нм



ICP/RF plasma etching in SF<sub>6</sub>/C<sub>4</sub>F<sub>8</sub>









Si

### 26.07.2024

### Летняя школа фонда «Базис»

### Сергей Дьяков



SiGe

# Экспериментальная установка



Figure 8. Schematics of a) the directional photoluminescence (DPL) setup and b) the microphotoliminescence (µPL) setup.

### Летняя школа фонда «Базис»

# Метод расчета







- **\Box** Fourier modal method (RCWA)
  - $|\mathbf{O}\rangle = \mathbb{S}(\lambda, k_x, k_y) |\mathbf{I}\rangle$
- Emissivity is calculated by the method of oscillating dipoles.
- $\label{eq:constraint} \begin{array}{|c|} \hline \textbf{D} & \text{Eigenmodes are calcultated by} \\ & \text{finding the poles of scattering} \\ & \mathbb{S}^{-1}(\lambda,k_x,k_y) \, |\mathbf{O}\rangle_{res} = |0\rangle \\ & E_{\mathrm{res}} = \Omega i\Gamma \end{array}$

### неструктурированный образец



# Треугольная решетка и первая зона Бриллюэна



# Квазиволноводные моды в ФК слоях и спектры излучения



26.07.2024 Л

Летняя школа фонда «Базис»

# Резонансы вблизи Г-точки



Летняя школа фонда «Базис»

# Резонансы вблизи Г-точки



# Симметрия квазиволноводных мод



# Построение распределения поля в



Figure 1: (Color online) Phase representation of the fields set by different amplitude vectors  $\vec{F}$ .

Летняя школа фонда «Базис»











# Группа вращательной симметрии С<sub>6</sub>



Операции симметрии для двумерной треугольной решетки



C<sub>6v</sub> point group:

$$C_{6v} = \{E, C_6, C_6^{-1}, C_3, C_3^{-1}, C_2, \sigma_x, \sigma'_x, \sigma''_x, \sigma_y, \sigma'_y, \sigma''_y\}$$

# Основы теории групп

- Любая собственная функция является неприводимым представлением группы С<sub>6v</sub>.
- Существуют одномерные и двумерные неприводимые представления
- Одномнерные представляния задаются одной функцией
- Двумерные неприводимые представления задаются двумя функциями; любая линейная комбинация этих собственных функций также является собственной функцией
- Каждое неприводимое представление имеет свою пространственную симметрию, которая выражется набором характров

1D 
$$Rf_{B_1}(r_{\parallel}) = \chi_{B_1}(R)f_{B_1}(r_{\parallel})$$
  
2D  $Rf_E^{(1)}(r_{\parallel}) = A_{11}f_E^{(1)}(r_{\parallel}) + A_{12}f_E^{(2)}(r_{\parallel})$   
2D  $Rf_E^{(2)}(r_{\parallel}) = A_{21}f_E^{(1)}(r_{\parallel}) + A_{22}f_E^{(2)}(r_{\parallel})$   
Tr(A)  $\equiv A_{11} + A_{22} = \chi_E(R)$ 

| 1.2516   |   |        |        |       | 27.4        |             |
|----------|---|--------|--------|-------|-------------|-------------|
| $C_{6v}$ | E | $2C_6$ | $2C_3$ | $C_2$ | $3\sigma_y$ | $3\sigma_x$ |
| $A_1$    | 1 | 1      | 1      | 1     | 1           | 1           |
| $A_2$    | 1 | 1      | 1      | 1     | -1          | -1          |
| $B_1$    | 1 | -1     | 1      | -1    | 1           | -1          |
| $B_2$    | 1 | -1     | 1      | -1    | 1           | 1           |
| $E_1$    | 2 | 1      | -1     | -2    | 0           | 0           |
| $E_2$    | 2 | -1     | -1     | 2     | Ó           | 0           |

Таблица характеров для группы С<sub>6v</sub>

### Летняя школа фонда «Базис»

# Basics of group theory



| 16               |            | T     | $\Sigma$ |
|------------------|------------|-------|----------|
| Г:               | $A_1$      | A     | A        |
|                  | $A_2$      | В     | B        |
|                  | $B_1$      | A     | B        |
|                  | $B_2$      | В     | A        |
|                  | $E_1, E_2$ | A + B | A + B    |
| K:               | $A_1$      | A     | -        |
|                  | $A_2$      | В     |          |
|                  | E          | A + B | -        |
| $\overline{M}$ : | $A_1, B_1$ | -     | A        |
|                  | $A_2, B_2$ | -     | B        |

| $C_{3v}$         | E | $2C_3$ | $3\sigma_{v}$ | $C_{1h}$ | E | σ  |
|------------------|---|--------|---------------|----------|---|----|
| $\overline{A_1}$ | 1 | 1      | 1             | A        | 1 | 1  |
| $A_2$            | 1 | 1      | -1            | В        | 1 | -1 |
| E                | 2 | -1     | 0             | 2        |   |    |

26.07.2024

Летняя школа фонда «Базис»

# Symmetry of quasiguided modes



Таблица характеров точечной группы симметрии С<sub>6</sub>.

-1

2

### Singlet modes



### 26.07.2024

 $E_2$ 

 $\mathbf{2}$ 

-1

### Летняя школа фонда «Базис»

0

0

# Bound states in the continuum



# **Resonances near Γ-point**

| мода           | мера поляризации                   | мера поляризации        | мера поляризации        |
|----------------|------------------------------------|-------------------------|-------------------------|
|                | моды при                           | моды при                | действующего поля при   |
|                | $k_x = 0$                          | $k_x = 0.2$ мкм $^{-1}$ | $k_x = 0.2$ мкм $^{-1}$ |
|                | $k_y = 0$                          | $k_y = 0.0$             | $k_y = 0$               |
| A <sub>1</sub> | (0.088, 0.912)                     | (0.167, 0.833)          | (0.943, 0.057)          |
| A <sub>2</sub> | (1.000, 0.000)                     | (1.000, 0.000)          | (0.999, 0.001)          |
| B <sub>1</sub> | (1.000, 0.000)                     | (0.973, 0.027)          | (0.989, 0.011)          |
| B <sub>2</sub> | (0.132, 0.868)                     | (0.926, 0.074)          | (0.786, 0.214)          |
| E <sub>1</sub> | (0.848, 0.152)                     | (0.162, 0.838) и        | (0.171, 0.829) и        |
| верхний        | 2857 2252 0352                     | (0.164, 0.836)          | (0.171, 0.829)          |
| E <sub>1</sub> | (0.374, 0.626)                     | (0.672, 0.328) и        | (0.627, 0.373) и        |
| нижний         |                                    | (0.688, 0.312)          | (0.627, 0.373)          |
| E <sub>2</sub> | t(0.878, 0.122)                    | (0.146, 0.854) и        | (0.269, 0.731) и        |
| верхний        | 5 838675 (St. Human St) (201 - 195 | (0.145, 0.855)          | (0.272, 0.728)          |
| E <sub>2</sub> | (0.434, 0.566)                     | (0.995, 0.005) и        | (0.993, 0.007) и        |
| нижний         | 162 1851 1652                      | (0.995, 0.005)          | (0.994, 0.006)          |

Таблица 3 — Мера поляризации C собственных мод ФКС, вычисленные для периода a = 600 нм, r/a = 0.2a. Величина C = (1, 0) соответствует чисто горизонтальной поляризации, а C = (0, 1) соответствует чисто вертикальной поляризации. При вычислении поляризационной меры C действующего поля (столбец 4) мы усредняем по х- и у-поляризациям падающей плоской волны.



Рисунок 3.11 — Излучательная способность колеблющихся горизонтальных (синяя линия) и вертикальных (красные линии) диполей, равномерно распределенных по излучающему слою в ФКС с a = 600 нм, r/a = 0.2,  $k_x = 0.2$  мкм<sup>-1</sup>,  $k_y = 0$ .



# Спасибо за внимание!