Hybrid resonances in plasmonic nanoparticle gratings

Nikolay Gippius

Dyakov

Ilia Fradkin

Vladimir Kulakovskiy

Andrey Demenev

Vladimir Antonov

"BASIS" Summer School 2024

Skolkovo Institute of Science and Technology

July 29, 2024

Ilia Fradkin "BASIS" Summer School 2024 **2**

Dielectric Resonators

- Transparent, non-dissipating materials
- High quality factor (up to 10^{10})
- Delocalized fields

Surface Plasmon Resonance Localized Surface Plasmon Resonance

Plasmonic Resonators

- Intrinsic Joule heating
- Low quality factor $(10^1 10^2)$
- Deep-subwavelength field localization

- Transparent, non-dissipating materials
- High quality factor (up to 10^{10})
- Delocalized fields

Dielectric Resonators | Plasmonic Resonators

- Intrinsic Joule heating
- Low quality factor $(10^1 10^2)$
- Deep-subwavelength field localization

Is it possible to combine both advantages?

Applications

Ilia Fradkin "BASIS" Summer School 2024 **8**

Outline

- How do plasmonic lattices work?
	- Interaction via waveguide modes and Rayleigh anomalies
- How to describe plasmonic lattices accurately?
	- Hybrid computational approach: dipole approximation and Fourier modal method
	- Dipole approximation validity
	- Polarizability calculation
	- Lattice sum calculation
- Applications
	- Stack of plasmonic lattices
	- Grating for routing circularly polarized light
- Conclusions

Effective polarizability

$$
\mathbf{P}_{i} = \hat{\alpha} \mathbf{E}_{i}^{\text{bg}}
$$
\n
$$
\mathbf{E}_{i}^{\text{bg}} = \mathbf{E}_{i}^{0} + \sum_{j \neq i} \hat{G}(\mathbf{r}_{i}, \mathbf{r}_{j}) \mathbf{P}_{j}
$$
\nWe apply Bloch theorem and solve the system of equations.

$$
\mathbf{P}_{i} = \hat{\alpha}^{\text{eff}} \mathbf{E}_{i}^{0} \quad \hat{\alpha}^{\text{eff}} = \hat{\alpha} (\hat{I} - \hat{C}(\mathbf{k}_{\parallel}) \hat{\alpha})^{-1}
$$

$$
\hat{C}(\mathbf{k}_{\parallel}) = \sum_{j \neq i} \hat{G}(\mathbf{r}_{i}, \mathbf{r}_{j}) e^{-i\mathbf{k}_{\parallel}(\mathbf{r}_{i} - \mathbf{r}_{j})}
$$
And obtain generalized
effective polarizability tensor

$$
\hat{\alpha}^{\text{eff}} = \hat{\alpha}(\hat{I} - \hat{C}(\mathbf{k}_{\parallel})\hat{\alpha})^{-1}
$$
\n
$$
\hat{\alpha}^{\text{eff}} = \hat{\alpha}(\hat{I} - \hat{C}(\mathbf{k}_{\parallel})\hat{\alpha})^{-1}
$$
\nLocalized resonance of individual nanoparticle

\n
$$
\text{Re}\hat{\alpha}^{-1}(\omega) = 0
$$
\nRe\hat{\alpha}^{-1}(\omega) = \text{Re}\hat{C}(\omega, \mathbf{k}_{\parallel})

Plasmonic lattices

Linden, S., Kuhl, J., & Giessen, H. (2001), *Physical review letters*, *86*(20), 4688. Guo, R., Hakala, T. K., & Törmä, P. (2017), *Physical Review B*, *95*(15), 155423.

Ilia Fradkin "BASIS" Summer School 2024 **16**

Plasmonic lattice on a waveguide

Plasmonic lattice in homogeneous medium

Plasmonic lattices

Let us consider a toy model:

$$
\begin{pmatrix}\n\alpha & \alpha & \frac{A}{\omega - \widetilde{\omega}_{\text{LSPR}}} & \mathbf{C}\alpha & \frac{B}{\omega - \widetilde{\omega}_{\text{WG}}}\n\end{pmatrix}
$$
\n
$$
\alpha^{\text{eff}} \propto \frac{\omega - \widetilde{\omega}_{\text{WG}}}{(\omega - \widetilde{\omega}_{1})(\omega - \widetilde{\omega}_{2})}
$$

"Waveguide mode" Classical Avoided Plasmon Resonance" Crossing $|\alpha^{\text{eff}}|$ $|C|$ $|\alpha|$ 2.5 2.5 2.5 $\overline{2}$ $\overline{2}$ $\overline{2}$ $\begin{bmatrix} 1.5 \\ d \\ 3 \end{bmatrix}$ $\frac{1.5}{3}$ $\frac{1.5}{3}$ 0.5 0.5 0.5 \circ \circ $\mathbf{0}$ 0.2 0.4 0.6 0.8 $\overline{0}$ 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 $\mathbf{0}$ $\overline{0}$ k_{x} (a.u.) k_{x} (a.u.) k_{x} (a.u.)

"Localized Surface

Waveguide modes fully compensate incident field

Direct interaction via far-field

channels – Rayleigh Anomaly

Let us consider a toy model:

When resonant condition might be fulfilled? $\text{Re}\hat{\alpha}^{-1}(\omega) = \text{Re}\hat{C}(\omega, \mathbf{k}_{\parallel})$

When resonant condition might be fulfilled? $\text{Re}\hat{\alpha}^{-1}(\omega) = \text{Re}\hat{C}(\omega, \mathbf{k}_{\parallel})$

"Localized Surface Plasmon Resonance"

"Rayleigh Anomaly" "One-sided" hybridization

Field of ± 1 diffraction orders fully compensate incident field)

Theoretical consideration

Scattering matrix calculation

Dipole approximation validity

When our approximation breaks?

$$
\begin{pmatrix}\n\mathbf{p} \\
\mathbf{m} \\
\hat{\mathbf{Q}}\n\end{pmatrix} = \begin{pmatrix}\n\hat{\alpha}_0^p & \hat{\alpha}_1^p & \dots \\
\hat{\alpha}_0^m & \hat{\alpha}_1^m & \dots \\
\hat{\alpha}_0^Q & \hat{\alpha}_1^Q & \dots\n\end{pmatrix} \begin{pmatrix}\n\mathbf{E} \\
\nabla \otimes \mathbf{E} \\
\dots\n\end{pmatrix}
$$
Dipole approximation validity

When our approximation breaks?

- Large particle
- High-multipole resonances

Dipole approximation validity

When our approximation breaks?

- Large particle
- High gradients (near field)

Dipole approximation validity

Ilia Fradkin "BASIS" Summer School 2024 July 29, 2024 **43**

Polarizability tensor: examples

Ewald, Paul P. *Annalen der physik* 369.3 (1921): 253-287.

 $\hat{M}(\mathbf{k}_{\parallel}) = \frac{1}{4\pi^2} \int \hat{G}(\mathbf{r}_{\parallel}) e^{-i\mathbf{k}_{\parallel}\mathbf{r}_{\parallel}} d^2 \mathbf{r}_{\parallel}$ $\hat{M} = \hat{M}^0 + \hat{M}^r$ $\hat{M}^{0,\pm} = \frac{ik_0^2}{2\pi k_z k_\|^2} \left(\begin{array}{ccc} k_y^2 & -k_x k_y & 0 \ -k_x k_y & k_x^2 & 0 \ 0 & 0 & 0 \end{array} \right) +$ $\left. +\frac{ik_0^2}{2\pi k^2 k_\|^2} \left(\begin{array}{ccc} k_x^2 k_z & k_x k_y k_z & \mp k_x k_\|^2 \ k_x k_y k_z & k_y^2 k_z & \mp k_y k_\|^2 \ \mp k_x k_\|^2 & \mp k_y k_\|^2 & k_\|^4/k_z \end{array} \right) \right.$

 $\hat{M}(\mathbf{k}_{\parallel}) = \frac{1}{4\pi^2} \int \hat{G}(\mathbf{r}_{\parallel}) e^{-i\mathbf{k}_{\parallel}\mathbf{r}_{\parallel}} d^2 \mathbf{r}_{\parallel}$ $\hat{M} = \hat{M}^0 + \hat{M}^r$ $\hat{M}^r = e^{2ik_zh} \left[r_s(k_{\parallel}) \frac{ik_0^2}{2\pi k_z k_{\parallel}^2} \left(\begin{array}{ccc} k_y^2 & -k_x k_y & 0 \ -k_x k_y & k_x^2 & 0 \ 0 & 0 & 0 \end{array} \right) - \right]$ $r_p(k_{\parallel})\frac{ik_0^2}{2\pi k^2 k_{\parallel}^2} \left(\begin{array}{ccc} k_x^2 k_z & k_x k_y k_z & k_x k_{\parallel}^2 \ k_x k_y k_z & k_y^2 k_z & k_y k_{\parallel}^2 \ -k_x k_{\perp}^2 & -k_y k_{\perp}^2 & -k_{\perp}^4/k_z \end{array} \right) \ .$ sum in Fourier space

Polarizability tensor: FEM

I.M. Fradkin, S.A. Dyakov, and N.A. [Gippius,](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.075310) Phys. Rev. B 99, 075310

Remarks and questions

- **FEM** *calculations conducted in COMSOL Multiphysics.*
- **RCWA+DDA** *calculations from this study.*
- **RCWA** calculations (based on the original works of Prof. Gippius and Tikhodeev).
- **RCWA+ASR** calculations conducted by Prof. Thomas Weiss.

Stack of plasmonic lattices

I.M. Fradkin, S.A. Dyakov, and N.A. [Gippius,](https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.14.054030) Phys. Rev. Applied **14**, 054030

Dipole model

Ilia Fradkin "BASIS" Summer School 2024 July 29, 2024 **58**

Indeterminate term Derivative discontinuity Determines resonance condition Ilia Fradkin "BASIS" Summer School 2024 July 29, 2024 **59**

Dispersion of plasmonic modes

Lin, J., Mueller, J. B., Wang, Q., Yuan, G., [Antoniou,](https://www.science.org/doi/full/10.1126/science.1233746?casa_token=dL91-Un6D-8AAAAA:1yEAFHs9z3QHZTQvOakGlAYySoO8SFgxBZfNXLkQP7WQQ0-ljYukVCWGR0jCQUhvHsBGo0gHqerZqjA) N., Yuan, X. C., & Capasso, F., 2013, *Science*, *340*(6130), 331-334.

Vladimir Kulakovskiy

Andrey Demenev

Vladimir Antonov

Fradkin, Ilia M., et al., *Advanced Optical Materials* (2024): 2303114.

Ilia Fradkin "BASIS" Summer School 2024 **62**

What is the handedness?

https://ru.wikipedia.org

Ilia Fradkin "BASIS" Summer School 2024 July 29, 2024 **63**

Right-handed screw

https://fruitnice.ru

Spontaneous emission control

Vladimir Kulakovskiy

Andrey Demenev

Fradkin, I. M., Demenev, A. A., [Kulakovskii, V. D., Antonov, V.](https://aip.scitation.org/doi/abs/10.1063/5.0085786) N., & Gippius, N. A. *Appl. Phys. Lett.*, 2022, *120*, 17, 171702.

Ilia Fradkin "BASIS" Summer School 2024 **67**

Photoluminescense

Photoluminescense

Conclusions

- ❑Lattices of plasmonic nanoparticles support **hybrid optical modes**
- ❑Discrete **dipole approximation** + **scattering matrix** = efficient numerical approach
- ❑Coupling via **waveguide modes** and **Rayleigh anomalies** is strongly **different**
- ❑Grating coupler of plasmonic nanoparticles routs waveguide modes (**95% routing efficiency**) and provides circularlypolarized outcoupling (**97% degree of circular polarization**)

Thank you for your attention! fradkinim@gmail.ru

Polarizability tensor

Spectra of lattice with basis

Right-hand Circular $\frac{2}{3}$ $\frac{1.7}{3}$ **Polarization Polarization**

Left-hand Circular Polarization

Ilia Fradkin "BASIS" Summer School 2024 July 29, 2024 **73**

Spectra of lattice with basis

Spectra of lattice with basis

Remarks and questions

13. Some details of the geometry of interaction of light with the lattice of plasmonic particles (Ch.2) are missing.

Indeed, it would have been very useful to describe more details of light interaction with simple lattice of plasmonic nanoparticles.

Ilia Fradkin "BASIS" Summer School 2024 **76**

 $\overline{\mathsf{X}}$

y

 $\overline{\mathsf{X}}$

Scattering matrix calculation

Ilia Fradkin "BASIS" Summer School 2024 July 29, 2024 **77**