Hybrid resonances in plasmonic nanoparticle gratings

Nikolay Gippius

Dyakov

Ilia Fradkin

Vladimir Kulakovskiy

Andrey Demenev

Vladimir Antonov

"BASIS" Summer School 2024

Skolkovo Institute of Science and Technology

July 29, 2024

Ilia Fradkin

Dielectric Resonators

- Transparent, non-dissipating materials
- High quality factor (up to 10^{10})
- Delocalized fields

Surface Plasmon Resonance

Localized Surface Plasmon Resonance

Plasmonic Resonators

- Intrinsic Joule heating
- Low quality factor $(10^1 10^2)$
- Deep-subwavelength field localization

Dielectric Resonators

- Transparent, non-dissipating materials
- High quality factor (up to 10^{10})
- Delocalized fields

Plasmonic Resonators

- Intrinsic Joule heating
- Low quality factor $(10^1 10^2)$
- Deep-subwavelength field localization

Is it possible to combine both advantages?

Applications

Outline

- How do plasmonic lattices work?
 - Interaction via waveguide modes and Rayleigh anomalies
- How to describe plasmonic lattices accurately?
 - Hybrid computational approach: dipole approximation and Fourier modal method
 - Dipole approximation validity
 - Polarizability calculation
 - Lattice sum calculation
- Applications
 - Stack of plasmonic lattices
 - Grating for routing circularly polarized light
- Conclusions

Effective polarizability

$$\mathbf{P}_i = \hat{lpha} \mathbf{E}_i^{\mathrm{bg}}$$

 $\mathbf{E}_i^{\mathrm{bg}} = \mathbf{E}_i^0 + \sum_{j \neq i} \hat{G}(\mathbf{r}_i, \mathbf{r}_j) \mathbf{P}_j$
We apply Bloch theorem and solve the system of equations.

$$\begin{split} \mathbf{P}_{i} &= \hat{\alpha}^{\text{eff}} \mathbf{E}_{i}^{0} \quad \hat{\alpha}^{\text{eff}} = \hat{\alpha} (\hat{I} - \hat{C}(\mathbf{k}_{\parallel}) \hat{\alpha})^{-1} \\ \hat{C}(\mathbf{k}_{\parallel}) &= \sum_{j \neq i} \hat{G}(\mathbf{r}_{i}, \mathbf{r}_{j}) e^{-i\mathbf{k}_{\parallel}(\mathbf{r}_{i} - \mathbf{r}_{j})} \\ \text{And obtain generalized} \\ \text{effective polarizability tensor} \end{split}$$

Hybrid resonances

$$\hat{\alpha}^{\text{eff}} = \hat{\alpha} \left(\hat{I} - \hat{C} (\mathbf{k}_{\parallel}) \hat{\alpha} \right)^{-1}$$
Localized resonance of
individual nanoparticle
 $\operatorname{Re} \hat{\alpha}^{-1}(\omega) = 0$
Hybrid lattice resonance
 $\operatorname{Re} \hat{\alpha}^{-1}(\omega) = \operatorname{Re} \hat{C}(\omega, \mathbf{k}_{\parallel})$

Plasmonic lattices

Linden, S., Kuhl, J., & Giessen, H. (2001), Physical review letters, 86(20), 4688.

Guo, R., Hakala, T. K., & Törmä, P. (2017), *Physical Review B*, 95(15), 155423.

Ilia Fradkin

Plasmonic lattice on a waveguide

Ilia Fradkin

Plasmonic lattice in homogeneous medium

Ilia Fradkin

Plasmonic lattices

Ilia Fradkin

Let us consider a toy model:

$$\alpha \propto \frac{A}{\omega - \widetilde{\omega}_{\text{LSPR}}} \qquad C \propto \frac{B}{\omega - \widetilde{\omega}_{\text{WG}}}$$
$$\alpha^{\text{eff}} \propto \frac{\omega - \widetilde{\omega}_{\text{WG}}}{(\omega - \widetilde{\omega}_1)(\omega - \widetilde{\omega}_2)}$$

Ilia Fradkin

Ilia Fradkin

Ilia Fradkin

"Waveguide mode" Plasmon Resonance" Crossing $|\alpha^{\text{eff}}|$ |C| α 2.5 2.5 2.5 2 2 2 1.5 α (a.u.) 1.5 α (a.u.) ε.(a.u.) 1.5 0.5 0.5 0.5 0 0 0 0.2 0.6 0.2 0.2 0.4 0.6 0.8 0 0.4 0.8 0.4 0.6 0.8 0 0 k_x (a.u.) k_x (a.u.) k_x (a.u.)

"Localized Surface

Classical Avoided

Waveguide modes fully compensate incident field

Direct interaction via far-field

Opening of new diffraction channels – <u>Rayleigh Anomaly</u>

Let us consider a toy model:

When resonant condition might be fulfilled? $\operatorname{Re}\hat{\alpha}^{-1}(\omega) = \operatorname{Re}\hat{C}(\omega, \mathbf{k}_{\parallel})$

When resonant condition might be fulfilled? $\operatorname{Re}\hat{\alpha}^{-1}(\omega) = \operatorname{Re}\hat{C}(\omega, \mathbf{k}_{\parallel})$

"Rayleigh Anomaly" Plasmon Resonance" hybridization $|\alpha^{\text{eff}}|$ |C| $|\alpha|$ 2 2 2 1.8 1.8 1.8 1.6 1.6 1.6 1.4 1.4 1.4 (1.2 1 3 0.8 (1.2 1 3 0.8 1.2 1 (a.u.) 3 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 0 0 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0 0 1 0.2 0.4 0.6 0.8 0 k_x (a.u.) k_x (a.u.) k_x (a.u.)

"Localized Surface

"One-sided"

Field of ± 1 diffraction orders fully compensate incident field)

Ilia Fradkin

Theoretical consideration

Scattering matrix calculation

Dipole approximation validity

When our approximation breaks?

$$\begin{pmatrix} \mathbf{p} \\ \mathbf{m} \\ \hat{\mathbf{Q}} \end{pmatrix} = \begin{pmatrix} \hat{\alpha}_0^p & \hat{\alpha}_1^p & \dots \\ \hat{\alpha}_0^m & \hat{\alpha}_1^m & \dots \\ \hat{\alpha}_0^Q & \hat{\alpha}_1^Q & \dots \end{pmatrix} \begin{pmatrix} \mathbf{E} \\ \nabla \otimes \mathbf{E} \\ \dots \end{pmatrix}$$
Dipole approximation validity

When our approximation breaks?

- Large particle
- High-multipole resonances

Dipole approximation validity

When our approximation breaks?

- Large particleHigh gradients (near field)

Dipole approximation validity

Polarizability tensor: examples

Ewald, Paul P. Annalen der physik 369.3 (1921): 253-287.

Interface $\hat{M}(\mathbf{k}_{\parallel}) = rac{1}{4\pi^2} \int \hat{G}(\mathbf{r}_{\parallel}) e^{-i\mathbf{k}_{\parallel}\mathbf{r}_{\parallel}} d^2\mathbf{r}_{\parallel}$ $\hat{M} = \hat{M}^0 + \hat{M}^r$ $\hat{M}^{0,\pm} = \frac{ik_0^2}{2\pi k_z k_{\parallel}^2} \begin{pmatrix} k_y^2 & -\kappa_x \kappa_y & 0\\ -k_x k_y & k_x^2 & 0\\ 0 & 0 & 0 \end{pmatrix} +$ $+\frac{ik_{0}^{2}}{2\pi k^{2}k_{\parallel}^{2}}\left(\begin{array}{ccc}k_{x}^{2}k_{z} & k_{x}k_{y}k_{z} & \mp k_{x}k_{\parallel}^{2}\\k_{x}k_{y}k_{z} & k_{y}^{2}k_{z} & \mp k_{y}k_{\parallel}^{2}\\\mp k_{x}k_{\parallel}^{2} & \mp k_{y}k_{\parallel}^{2} & k_{\parallel}^{4}/k_{z}\end{array}\right)$ sum in Fourier space

Interface $\hat{M}(\mathbf{k}_{\parallel}) = \frac{1}{4\pi^2} \int \hat{G}(\mathbf{r}_{\parallel}) e^{-i\mathbf{k}_{\parallel}\mathbf{r}_{\parallel}} d^2\mathbf{r}_{\parallel}$ $\hat{M} = \hat{M}^0 + \hat{M}^r$ $\hat{M}^{0,\pm} = \frac{ik_0^2}{2\pi k_z k_{\parallel}^2} \begin{pmatrix} k_y^2 & -k_x \kappa_y & 0\\ -k_x k_y & k_x^2 & 0\\ 0 & 0 & 0 \end{pmatrix} +$

 $+\frac{ik_0^2}{2\pi k^2 k_{\parallel}^2} \begin{pmatrix} k_x^2 k_z & k_x k_y k_z & \mp k_x k_{\parallel}^2 \\ k_x k_y k_z & k_y^2 k_z & \mp k_y k_{\parallel}^2 \\ \mp k_x k_{\parallel}^2 & \mp k_y k_{\parallel}^2 & \left(k_{\parallel}^4/k_z\right) \end{pmatrix}$

sum in Fourier space

Interface $\hat{M}(\mathbf{k}_{\parallel}) = \frac{1}{4\pi^2} \int \hat{G}(\mathbf{r}_{\parallel}) e^{-i\mathbf{k}_{\parallel}\mathbf{r}_{\parallel}} d^2\mathbf{r}_{\parallel}$ $\hat{M} = \hat{M}^0 + \hat{M}^r$ $\hat{M}^{r} = e^{2ik_{z}h} \left| r_{s}(k_{\parallel}) \frac{ik_{0}^{2}}{2\pi k_{z}k_{\parallel}^{2}} \left(\begin{array}{ccc} k_{y}^{2} & -k_{x}k_{y} & 0\\ -k_{x}k_{y} & k_{x}^{2} & 0\\ 0 & 0 & 0 \end{array} \right) - \right.$ $r_{p}(k_{\parallel})\frac{ik_{0}^{2}}{2\pi k^{2}k_{\parallel}^{2}}\left(\begin{array}{ccc}k_{x}^{2}k_{z} & k_{x}k_{y}k_{z} & k_{x}k_{\parallel}^{2}\\k_{x}k_{y}k_{z} & k_{y}^{2}k_{z} & k_{y}k_{\parallel}^{2}\\-k_{x}k_{\parallel}^{2} & -k_{y}k_{\parallel}^{2} & -k_{\parallel}^{4}/k_{z}\end{array}\right)$ sum in Fourier space

Polarizability tensor: FEM

I.M. Fradkin, S.A. Dyakov, and N.A. Gippius, Phys. Rev. B 99, 075310

Remarks and questions

- **FEM** calculations conducted in COMSOL Multiphysics.
- **RCWA+DDA** calculations from this study.
- RCWA calculations (based on the original works of Prof. Gippius and Tikhodeev).
- RCWA+ASR calculations conducted by Prof. Thomas Weiss.

Stack of plasmonic lattices

I.M. Fradkin, S.A. Dyakov, and N.A. Gippius, Phys. Rev. Applied **14**, 054030

Dipole model

Ilia Fradkin

$$C_{11}^{xx} = \frac{4\pi}{s} \frac{ik_0^2}{k_z} + \tilde{C}_{11}^{xx} \qquad C_{12}^{xx} = \frac{4\pi}{s} \frac{ik_0^2}{k_z} e^{ik_z H} + \tilde{C}_{12}^{xx}(H)$$

Indeterminate term
$$\alpha_{xx}^{-1} - C_{11}^{xx} + C_{12}^{xx} =$$
$$\alpha_{xx}^{-1} + \frac{4\pi}{s} \frac{ik_0^2}{k_z} (e^{ik_z H} - 1) - \tilde{C}_{11}^{xx} + \tilde{C}_{12}^{xx}(H) \approx$$
$$\alpha_{xx}^{-1} - \frac{4\pi k_0^2}{s} H - \frac{4\pi k_0^2}{s} ik_z H^2 / 2 - \tilde{C}_{11}^{xx} + \tilde{C}_{12}^{xx}(H)$$

Determines
resonance condition
Derivative
discontinuity

Ilia Fradkin

Ilia Fradkin

Dispersion of plasmonic modes

Lin, J., Mueller, J. B., Wang, Q., Yuan, G., Antoniou, N., Yuan, X. C., & Capasso, F., 2013, *Science*, *340*(6130), 331-334.

Vladimir Kulakovskiy

Andrey Demenev

Vladimir Antonov

Fradkin, Ilia M., et al., Advanced Optical Materials (2024): 2303114.

What is the handedness?

https://ru.wikipedia.org

Ilia Fradkin

Right-handed screw

https://fruitnice.ru

Spontaneous emission control

Vladimir Kulakovskiy

Andrey Demenev

<u>Fradkin, I. M., Demenev, A. A.,</u> <u>Kulakovskii, V. D., Antonov, V.</u> <u>N., & Gippius, N. A. *Appl. Phys. Lett.*, 2022, *120*, 17, 171702.</u>

Ilia Fradkin

Photoluminescense

Photoluminescense

Conclusions

- Lattices of plasmonic nanoparticles support hybrid optical modes
- Discrete dipole approximation + scattering matrix = efficient numerical approach
- Coupling via waveguide modes and Rayleigh anomalies is strongly different
- Grating coupler of plasmonic nanoparticles routs waveguide modes (95% routing efficiency) and provides circularlypolarized outcoupling (97% degree of circular polarization)

Thank you for your attention! fradkinim@gmail.ru

Polarizability tensor

Spectra of lattice with basis

R_{RCP} TRCP ARCP 1.9 (c)D modes 1.8 Energy, [eV] 1'2 1'2 **Right-hand Circular Polarization** 1.4 TE modes 1.3 RLCP TLCP ALCP 1.9 1.8 Energy, [eV] 1'2 1'2 Left-hand Circular **Polarization** 1.4 1.3 -0.1 0 0.1 0.2 -0.2 -0.1 0 0.1 0.2 -0.2 0 0.1 0.2 -0.2 -0.1 $k_x, 2\pi/a_x$ $k_x, 2\pi/a_x$ $k_x, 2\pi/a_x$ ^{0.4}(g) т А 0.5(i) RCWA+DDA O FEM 0.3 0.8 0.3 0.2 0.6 0.2 0.1 0.1 0 0.2 1.6 1.7 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.3 1.5 1.8 1.9 1.4 Energy, [eV] Energy, [eV] Energy, [eV]

Ilia Fradkin

"BASIS" Summer School 2024

Spectra of lattice with basis

Spectra of lattice with basis

Remarks and questions

13. Some details of the geometry of interaction of light with the lattice of plasmonic particles (Ch.2) are missing. Extinction $\log T$

Indeed, it would have been very useful to describe more details of light interaction with simple lattice of plasmonic nanoparticles.

Ilia Fradkin

"BASIS" Summer School 2024

Scattering matrix calculation

