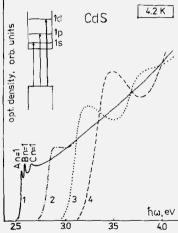


ФТИ — колыбель квантовых точек

Первые (коллоидные)

квантовые точки:



Екимов. Онущенко. Письма ЖЭТФ (1981) Екимов. Эфрос. Онущенко. SSC (1985)

VOLUME 74 NUMBER 20

PHYSICAL REVIEW LETTERS

15 May 1995

Ultranarrow Luminescence Lines from Single Quantum Dots

M. Grundmann,* J. Christen,† N. N. Ledentsov,‡ J. Böhrer, and D. Bimberg Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstrasse 36, D-10623 Berlin, Germany

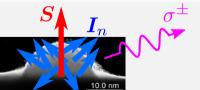
> S. S. Ruvimov, P. Werner, U. Richter, U. Gösele, and J. Heydenreich Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany

V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kop'ev, and Zh. I. Alferov A. F. Ioffe Physical-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg, Russia

- Оптические свойства ансамбля квантовых точек Ивченко, Кавокин, ФТТ (1992)
- Теория лазеров на квантовых точках Асрян. Сурис (1994)

• Теория спиновой релаксации Меркулов, Эфрос, Розен (2002)

Актуальными являются исследования запутанности спинов



- $lue{}$ спин электрона S
- \bigcirc спины ядер I_n
- поляризация фотонов σ^{\pm}

План доклада

- Напоминание: важные определения
- Запутанность спинов электрона и дырки
- Пара запутанных фотонов
- Много запутанных фотонов
 - Поляризационная анизотропия
 - Двулучепреломляющие микрорезонаторы
- Запутывание спинов ядер
 - Спиновое сжатие
 - Многочастичное запутывание
 - Эксперимент

Интерактивная часть

Решения трёх задач можно присылать до 18:00 пятницы (26 июля)

на smirnov@mail.ioffe.ru с темой "basis_problems"

Чистые запутанные состояния

- В гильбертовом пространстве различимых частиц $\mathcal{H}_{AB}=\mathcal{H}_A\otimes\mathcal{H}_B$ состояние Ψ_{AB} запутано (entangled), если $\Psi_{AB} \neq \Psi_A\otimes\Psi_B$
- Мера запутанности спутанность (concurrence) $\mathcal{C}=|\langle\Psi|\mathcal{T}|\Psi\rangle|,~\mathcal{T}\Psi=\sigma_y\otimes\sigma_y\Psi^*$ $\mathcal{C}\in[0,1]$

Задача 1:

$$\Psi = a |\uparrow\uparrow\rangle + b |\uparrow\downarrow\rangle + c |\downarrow\uparrow\rangle + d |\downarrow\downarrow\rangle$$

Чему равна спутанность C?

Смешанные запутанные состояния

- ullet Состояние запутано, если $ho_{AB}
 eq \sum_i p_i
 ho_A^{(i)} \otimes
 ho_B^{(i)}$
- ullet Спутанность $\mathcal{C}(
 ho)=\inf_{\{p_k,\Psi_k\}}\sum_k p_k \mathcal{C}(\Psi_k)$, $ho=\sum_k p_k \ket{\Psi_k}ra{\Psi_k}$
- Она же $\mathcal{C}=\max{\{0,\lambda_1-\lambda_2-\lambda_3-\lambda_4\}}$, λ_i собственные числа $R=\sqrt{\sqrt{\rho}\tilde{\rho}\sqrt{\rho}}$, $\tilde{\rho}=\sigma_y\otimes\sigma_y\rho^*\sigma_y\otimes\sigma_y$, $1\geq\lambda_1\geq\lambda_2\geq\lambda_3\geq\lambda_4\geq0$

Задача 2

Найти спутанность $\mathcal C$ состояния $ho=p\left|B\right>\left< B\right|+(1-p)\mathbb{1}/4$, B — белловское состояние, например, $\left|B\right>=\left(\left|\uparrow\uparrow\right>+\left|\downarrow\downarrow\right>\right)/\sqrt{2}$

План доклада

- Напоминание: важные определения
- 2 Запутанность спинов электрона и дырки
- Пара запутанных фотонов
- Много запутанных фотонов
 - Поляризационная анизотропия
 - Двулучепреломляющие микрорезонаторы
- Запутывание спинов ядер
 - Спиновое сжатие
 - Многочастичное запутывание
 - Эксперимент

Интерактивная часть

Решения трёх задач можно присылать до 18:00 пятницы (26 июля)

на smirnov@mail.ioffe.ru с темой "basis_problems"

План доклада

- Напоминание: важные определения
- Запутанность спинов электрона и дырки
- Пара запутанных фотонов
- Много запутанных фотонов
 - Поляризационная анизотропия
 - Двулучепреломляющие микрорезонаторы
- Запутывание спинов ядер
 - Спиновое сжатие
 - Многочастичное запутывание
 - Эксперимент

Решения трёх задач можно присылать до 18:00 пятницы (26 июля)
на smirnov@mail.ioffe.ru с темой "basis problems"

7 / 31

Последняя задача

Задача 3

Сверхтонкое взаимодействия спинов ядер кристаллической решётки со спинами электрона и дырки в экситоне приводит к расщеплению состояний $|\uparrow\downarrow\rangle$ и $|\downarrow\uparrow\rangle$ в симметричной квантовой точке $(\delta_b=0)$ на случайную величину $\delta_{\rm hf}$ с функцией распределения

$$f(\delta_{\rm hf}) = \sqrt{\frac{2}{\pi}} \frac{T_2^*}{\hbar} e^{-2(\delta_{\rm hf} T_2^*/\hbar)^2}.$$

Найти спутанность двух фотонов, испускаемых при каскадной рекомбинации биэкситона.

План доклада

- Напоминание: важные определения
- Запутанность спинов электрона и дырки
- Пара запутанных фотонов
- Много запутанных фотонов
 - Поляризационная анизотропия
 - Двулучепреломляющие микрорезонаторы
- Запутывание спинов ядер
 - Спиновое сжатие
 - Многочастичное запутывание
 - Эксперимент

Интерактивная часть

Решения трёх задач можно присылать до 18:00 пятницы (26 июля)
на smirnov@mail.ioffe.ru с темой "basis problems"

Свойства многочастично запутанных состояний

ullet Система m-частично запутана, если для любых наборов m подсистем $A_1^{(i)}\dots A_m^{(i)}$

$$\rho \neq \sum_{i} p_{i} \rho_{i}^{A_{1}^{(i)}} \otimes \ldots \otimes \rho_{i}^{A_{m}^{(i)}}$$

Rev. Mod. Phys. 80, 517 (2008) Phys. Rep. 474, 1 (2009)

• Пример истинно (genuine, m=2) запутанного состояния GHZ (Greenberger-Horne-Zeilinger) состояние:

$$|\mathrm{GHZ_N}\rangle = |\uparrow \dots \uparrow\rangle + |\downarrow \dots \downarrow\rangle$$

• Одномерные кластерные состояния:

$$|CL_2\rangle = |\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle = |\Phi^+\rangle$$

$$|CL_3\rangle = |\uparrow\uparrow\uparrow\rangle + |\downarrow\downarrow\downarrow\rangle = |GHZ_3\rangle$$

$$|CL_4\rangle = |\uparrow\uparrow\uparrow\uparrow\rangle + |\uparrow\uparrow\downarrow\downarrow\rangle + |\downarrow\downarrow\uparrow\uparrow\uparrow\rangle - |\downarrow\downarrow\downarrow\downarrow\rangle$$

Кластерные состояния
$$(\sigma_z^{(i-1)}\sigma_x^{(i)}\sigma_z^{(i+1)}|CL_N\rangle = |CL_N\rangle)$$

- максимально запутаны
- устойчивы к уходу одиночных частиц
- наиболее перспективны для квантовых вычислений

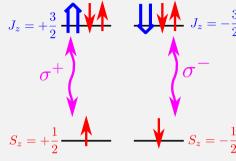
Схема генерации запутанных фотонов

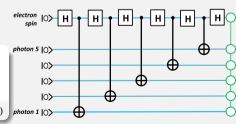
Одиночная квантовая точка, заряженная электроном

- **О** Ориентация спина в плоскости: $|\uparrow + \downarrow \rangle$
- Генерация (запутанного) фотона
 - Поглощение H фотона: $|\!\!\uparrow + \downarrow \!\!\!\downarrow \rangle$
 - Рекомбинация триона: $|\uparrow \sigma^+ + \downarrow \sigma^-\rangle$
 - ullet Поворот спина на 90°: $|(\uparrow + \downarrow)\sigma^+ + (\downarrow \uparrow)\sigma^-\rangle$
- ullet Повторение пункта ullet n раз для n=2: $|\uparrow(\sigma^+V-\sigma^-H)+\downarrow(\sigma^+V+\sigma^-H)\rangle$
- ① Измерение S_z определяет кластерное (максимально запутанное) состояние n фотонов для \uparrow : $|\sigma^+V-\sigma^-H\rangle$ (белловское состояние)

Последовательное запутывание поляризации фотона с электронным спином позволяет генерировать максимально запутанные состояния фотонов

Schön et al., Phys. Rev. Lett. (2005); Lindner, Rudolph, Phys. Rev. Lett. (2009)





Роль поперечного g-фактора тяжёлой дырки

- Прецессия спина дырки в трионе за время его жизни ограничивает чистоту кластерных состояний
- Квантовые точки с дырками более перспективны из-за более слабого сверхтонкого взаимодействия и медленной спиновой релаксации

Гамильтониан зеемановского взаимодействия дырки в базисе $\uparrow = |-3/2\rangle$, $\downarrow = |+3/2\rangle$:

$$\mathcal{H}_{Z} = \frac{\mu_{B}}{2} \left[g_{h}^{\mathrm{iso}} \left(\sigma_{x} B_{x} + \sigma_{y} B_{y} \right) + g_{h}^{xy} \left(\sigma_{x} B_{y} + \sigma_{y} B_{x} \right) + g_{h}^{xx} \left(\sigma_{x} B_{x} - \sigma_{y} B_{y} \right) \right]^{\mathrm{Pikus, Pikus, SSC (1994)}}$$

Изотропный вклад (группа D_{2d})

$$g_h^{\mathsf{iso}} = 4\mathcal{K}\beta^2$$

 \mathcal{K} — объёмный параметр Латтинжера, β — подмешивание лёгких дырок

Вклад от напряжений (симметрия $C_{2v})$

$$g_h^{xy} = 4\sqrt{3}\mathcal{K}\frac{d\varepsilon_{xy}}{\Delta_{lh}}$$
 $g_h^{xx} = 2\sqrt{3}\mathcal{K}\frac{d(\varepsilon_{xx} - \varepsilon_{yy})}{\Delta_{lh}}$

$$arepsilon$$
 — тензор деформаций, Δ_{lh} — расщепление дырок, d — деформ. потенциал

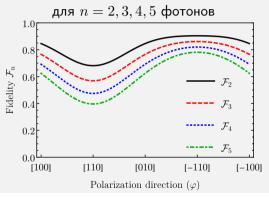
Конечный поперечный g-фактор дырки приводит к зависимости электрон-фотонного запутывания от направлений поляризации возбуждения и магнитного поля

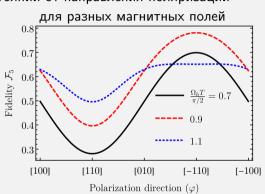
Генерация кластерных состояний фотонов

Импульсное возбуждение квантовой точки p типа

 $T_R=2$ нс, $au_0=0.4$ нс, $g_e=0.4$, $g_h^\perp=0.3$

Зависимость чистоты (fidelity) кластерных состояний от направления поляризации





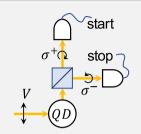
Чистота многочастично запутанных состояний

определяется механизмом g_h^\perp и направлением линейной поляризации импульсов

Эксперименты в ФТИ им. А.Ф. Иоффе

Измерение кросс-корреляционной функции второго порядка σ^{\pm} фотонов при непрерыном линейно поляризованном возбуждении квантовой точки в магнитном поле

$$g_{+-}^{(2)}(t) = \frac{\left\langle c_{+}^{\dagger}(0)c_{-}^{\dagger}(t)c_{-}(t)c_{+}(0)\right\rangle}{\left\langle c_{+}^{\dagger}c_{+}\right\rangle^{2}} = \frac{P(t, \sigma^{-}|0, \sigma^{+})}{P(\sigma^{+})P(\sigma^{-})},$$



Экспериментальная группа: Серов, Галимов, Рахлин, Торопов

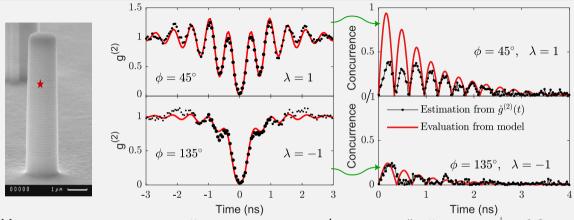
Корреляционная функция фотонов отражает спиновую динамику в квантовой точке

D.S.S. et al. Phys. Rev. B (2017); эксперимент: M. Gundin et al., arXiv (2024)

Методика аналогична спектроскопии спинового шума

Д.С.С. и др., УФН 191, 973 (2021)

Сравнение с экспериментом: $g_{+-}^{(2)}(t)$ и спутанность



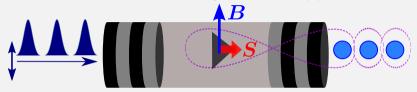
Механизм упругих напряжений для поперечного g-фактора тяжёлой дырки, $g_h^\perp=0.3$

Спутанность (concurrence) фотона и электрона $\mathcal{C}=2\,\langle |J_x(t)+\mathrm{i}J_y(t)|\rangle\approx |\dot{g}_{+-}^{(2)}(t)|/\Omega_e$ определяется производной $\dot{g}_{+-}^{(2)}(t)$ и зависит от направления поляризации возбуждения

Квантовая точка в нульмерном микрорезонаторе

Резонатор усиливает взаимодействие точки со светом

и увеличивает эффективность сбора фотонов



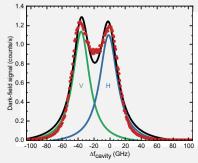
Особенности системы:

• Быстрая ориентация и управление спином оптическими импульсами

D.S.S. et al., Phys. Rev. B 92, 115305 (2015)

- ullet Макроскопические спиновые сигналы ($heta_F=\pm 45^\circ$) Mehdi et al., Nat. Commun. (2024)
- Генерация запутанных фотонов ограничивается расщеплением мод микрорезонатора

Antoniadis et al., Nat. Commun. (2023); Coste et al., Nat. Photon. (2023)



Описание микрорезонатора с квантовой точкой

Гамильтониан системы ($\hbar=1$):

$$\mathcal{H} = \omega_H c_H^{\dagger} c_H + \omega_V c_V^{\dagger} c_V + \sum_{\pm} \left[\omega_0 a_{\pm 3/2}^{\dagger} a_{\pm 3/2} + \left(g a_{\pm 3/2}^{\dagger} a_{\pm 1/2} c_{\pm} + \mathcal{E}_{\pm}(t) c_{\pm}^{\dagger} + \text{H.c.} \right) \right]$$

Собственные частоты резонатора: $\omega_{H,V} = \omega_c \pm \Delta$ расщеплены на 2Δ ; операторы уничтожения $c_{HV} = (c_+ \pm c_-)/\sqrt{2}$; ω_0 — частота триона

Возбуждение короткими импульсами с амплитудами циркулярно поляризованных компонент $\mathcal{E}_{\pm}(t)$

Аналитическое описание уравнением Линдблада:

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = -\mathrm{i}[\mathcal{H}, \rho] - \sum_{\kappa} \kappa \left(c_{\pm}^{\dagger} c_{\pm} \rho + \rho c_{\pm}^{\dagger} c_{\pm} - 2c_{\pm} \rho c_{\pm} \right),$$

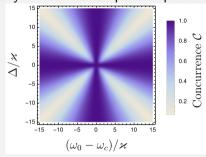
а численное — методом квантовых траекторий

Спектр мод
$$2\omega$$
 2ω 2ω 2ω 2ω частота

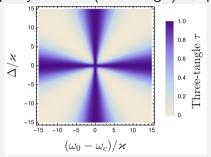
arkappa — затухание мод резонатора (слабая связь: $g \ll arkappa$)

Результат для электрон-фотонного запутывания

Спутанность электрона с фотоном



Три-путанность (three-tangle) e+2ph



Запутанность генерируется в повёрнутом базисе:

$$|\tilde{+}\rangle = \cos(\theta/2) |+\rangle - i\sin(\theta/2) |-\rangle , \qquad |\tilde{-}\rangle = \cos(\theta/2) |-\rangle - i\sin(\theta/2) |+\rangle \tan(\theta) = 2\Delta \varkappa / [(\omega_0 - \omega_c)^2 + \varkappa^2 - \Delta^2]$$

Расщепление мод резонатора позволяет генерировать максимальную запутанность,

если резонанс точки ровно между двумя модами ($\omega_0 = \omega_c$)

Leppenen, D.S.S., arXiv (2024)

План доклада

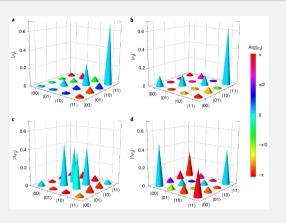
- Напоминание: важные определения
- Запутанность спинов электрона и дырки
- Пара запутанных фотонов
- Много запутанных фотонов
 - Поляризационная анизотропия
 - Двулучепреломляющие микрорезонаторы
- Запутывание спинов ядер
 - Спиновое сжатие
 - Многочастичное запутывание
 - Эксперимент

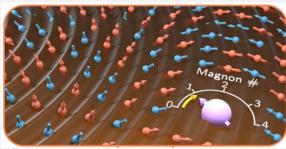
Интерактивная часть

Решения трёх задач можно присылать до 18:00 пятницы (26 июля)

на smirnov@mail.ioffe.ru с темой "basis_problems"

Мотивация



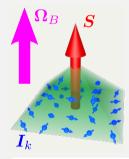


Waeber et al, Nat. Commun. (2019); Chekhovich et al, Nat. Nanotechnol. (2020); Gangloff et al, Science (2020); Gangloff et al, Nat. Phys. (2021); Jackson et al, Nat. Phys. (2021); Gillard et al., Nat. Commun. (2022); Ruskuc et al., Nature (2022)

Ядерные спины могут рассматриваться как носитель квантовой информации, а не только как канал эффективной спиновой релаксации локализованных электронов

Постановка задачи

Объект исследования: квантовая точка (донор, органическая молекула), содержащая одиночный электрон, взаимодействующий с большим количеством ядер



Модель центрального спина в приближении "ящика":

Рябченко, Семёнов, ЖЭТФ (1983); Козлов, ЖЭТФ (2007)

$$\mathcal{H} = AIS + \hbar\Omega_B S + \hbar\omega_B I$$

Полный ядерный спин $I = \sum_{k=1}^{N} I_k$, $I_k = 1/2$, электронный спин S, A — общая константа сверхтонкого взаимодействия, Ω_B , $\omega_B \parallel e_z$ — частоты ларморовской прецессии в магнитном поле

Частота ω_B исключается во вращающейся системе координат

Задача: аналитически описать ядерную спиновую динамику

в пределе большого количества ядер $(N \to \infty)$

- ullet В пределе $N o\infty$ ядерный спин ${m I}$ "классическая" величина
- ullet Проблема эволюции "классической" системы (I) под действием квантовой (S)

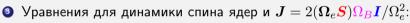
Результат для спиновой динамики ядер

Уравнения Гейзенберга в адиабатическом приближении:

$$rac{\mathrm{d} \boldsymbol{S}}{\mathrm{d} t} = \boldsymbol{\Omega}_e \times \boldsymbol{S} \qquad rac{\mathrm{d} \boldsymbol{I}}{\mathrm{d} t} = rac{A}{\hbar} \bar{\boldsymbol{S}} \times \boldsymbol{I},$$
 $\boldsymbol{\Omega}_e = \boldsymbol{\Omega}_N + \boldsymbol{\Omega}_B, \ \boldsymbol{\Omega}_N = A \boldsymbol{I}/\hbar$

Оператор среднего спина электрона:

$$\mathbf{S}(t) = e^{\mathrm{i}\mathcal{H}t/\hbar}\mathbf{S}e^{-\mathrm{i}\mathcal{H}t/\hbar} \quad \Rightarrow \quad \mathbf{\bar{S}} \approx \mathbf{\Omega}_e(\mathbf{\Omega}_e\mathbf{S})/\Omega_e^2$$



$$\frac{\mathrm{d}\boldsymbol{I}}{\mathrm{d}t} = \boldsymbol{\omega}_e \times \boldsymbol{J}, \qquad \frac{\mathrm{d}\boldsymbol{J}}{\mathrm{d}t} = \frac{A\Omega_B\Omega_B}{2\hbar\Omega_e^2} \times \boldsymbol{I}$$

Операторы теперь можно заменить на их средние значения

Ядерная спиновая динамика — когерентная суперпозиция прецессий частотами
$$\pm \omega_n$$
,

где
$$m{\omega}_n = rac{A m{\Omega}_B}{2 |\hbar m{\Omega}_B + A m{I}|}$$
 зависит от полного спина $m{I}$,

Shumilin, D.S.S., Phys. Rev. Lett. (2021)

Phys. Solid State (2022)

а амплитуды определяются поляризацией электрона S

Сжатые (squeezed) спиновые состояния

• Принцип неопределённости Гейзенберга:

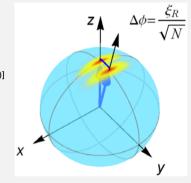
$$(\Delta I_{\alpha})^{2}(\Delta I_{\beta})^{2} \ge \langle I_{\gamma} \rangle^{2} / 4$$

• Степень сжатия ядерного спинового распределения для N спинов 1/2: [Kitagawa, Ueda, Phys. Rev. A 47 (1993)]

$$\xi_S^2 \equiv \frac{4\min(I_{\boldsymbol{n}_\perp}^2)}{N}$$

 $\xi_S < 1$ показывает наличие корреляций (запутывания)

ullet Степень "метрологического" сжатия: $\xi_R^2 \equiv \frac{2 \min(\Delta I_{m{n}_\perp}^2)}{\left\langle I_\parallel \right
angle}$



Состояния с $\xi_R < 1$ могут использоваться для квантовой метрологии (измерений с точностью недостижимой для классических приборов) [Ma et al., Phys. Rep. (2011)]

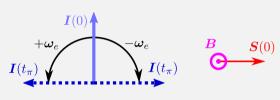
Протокол генерации сжатых ядерных спиновых состояний

Начальное когерентное (не сжатое) ядерное состояние с поляризацией P вдоль e_x и электронный спин $S
ightharpoonup \Omega_e$: $f(\mathbf{I}, 0) = \frac{1}{\epsilon(\sqrt{\pi}\delta_I)^3} \exp\left(-\frac{(I_x - PN/2)^2}{(\epsilon\delta_I)^2} - \frac{I_y^2 + I_z^2}{\delta_\tau^2}\right)$ 1.00 Распределения I_{n+} при t=0 и $t=\star$: 0.7560

Зависимость частоты ядерной спиновой прецессии ω_n от полного спина ядер I приводит к сжатию ядерной спиновой функции распределения ($\xi_S < 1$)

Генерация максимально запутанных GHZ состояний

Начальная поляризация ядер $I \uparrow \uparrow e_{y}$ и ориентация спина электрона $S
ightharpoonup e_r$ (магнитное поле $B \uparrow \uparrow e_z$)





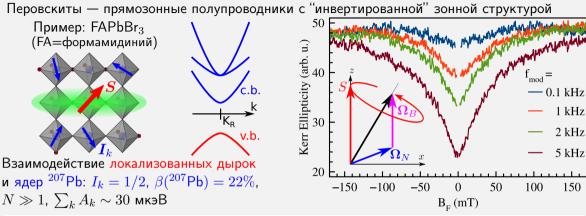
Суперпозиция ядерных спиновых прецессий в

противоположных направлениях генерирует суперпозицию $I=\pm e_x N/2$ за $t_\pi=\pi/(2\omega_e)$

Ядерные спины запутываются через взаимодействие с одиночным электронным спином

- ullet При $I\gg 1$ возникает когерентная суперпозиция макроскопически разных состояний
- Чистота GHZ состояний может превышать 99% на временах меньше $T_{2,n}^*$
- ullet При $I\gg 1$ это состояния типа кота Шрёдингера

Спиновая система галогенидных перовскитов



Гр. Д.Р. Яковлева (Дортмунд): импульсная спиновая ориентация с модуляцией поляризации на частоте f_{mod} в продольном магнитном поле:

при низкой частоте модуляции пропадает провал в магнитополевой зависимости спиновой поляризации (в отсутствие динамической поляризации)

Ядерная динамика под действием импульсов

ullet В модели "ящика" сохраняется величина ядерного спина I

Дьяконов, Перель, ЖЭТФ (1973) • Спин дырки возбуждается с периодом T_R : Yugova et al., Phys. Rev. В (2009)

$$\boldsymbol{S}^{ ext{after}} = (1 - \Gamma_0) \boldsymbol{S}^{ ext{before}} + \Gamma_0 S_0(t) \boldsymbol{e}_z$$

 Γ_0 — вероятность рождения триона, $S_0(t)$ — создаваемый спин

ullet При $T_R\gg T_2^*$ уравнение для ядерной функции распределения

$$f(t + T_R, I, I_z) = (1 - v)f(t, I, I_z) + vf(t, I, I_z - 1)$$

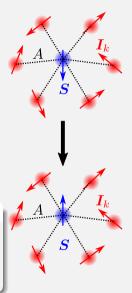
с вероятностью поворота ядерной спиновой флуктуации

$$v = \frac{A^2(I^2 - I_z^2)/2}{A^2(I^2 - I_z^2) + (AI_z + g_h \mu_B B)^2}$$

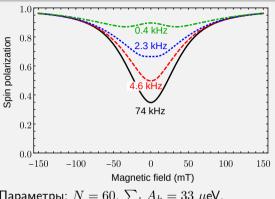
Уравнение Фоккера-Планка в континуальном пределе:

$$\frac{T_R}{\Gamma_0} \frac{\partial f}{\partial t} = 2S_0(t) \frac{\partial}{\partial I_z} (vf) + \frac{\partial}{\partial I_z} \left(\frac{v}{2} \frac{\partial f}{\partial I_z} \right)$$

Измеряемая поляризация дырки: $S_z(t) = S_0(t) \left\langle I_z^2/I^2 \right\rangle$



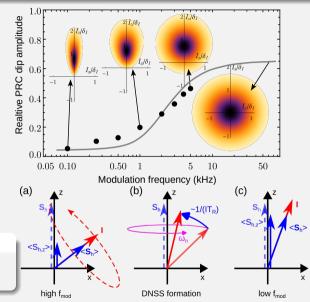
Сопоставление с экспериментом



Параметры: N=60, $\sum_k A_k=33~\mu {\rm eV}$, $T_R=13.2~{\rm ns},~\Gamma_0=0.003,~S_0=0.4$

При низкой частоте модуляции происходит разворот ядерных с

происходит разворот ядерных спиновых флуктуаций в направлении спина дырки



Анализ ядерной спиновой запутанности

• Формирование тёмных ядерных состояний:

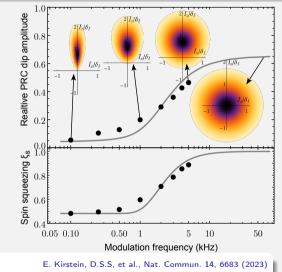
$$\hat{I}_+\Psi=(\hat{I}_x+\mathrm{i}\hat{I}_y)\Psi=0 \quad (I_z=I)$$
 Imamoğlu et al., Phys. Rev. Lett. (2003)

• Глубина провала в спиновой поляризации отражает ядерное спиновое сжатие:

$$\xi_s^2 = \frac{2}{N} \left\langle I_x^2 + I_y^2 \right\rangle \approx \frac{3}{2} \left(1 - \frac{\left\langle S_z \right\rangle}{S_0} \right)$$

• Условие запутанности M спинов:

$$\langle I_x^2 \rangle + \langle I_y^2 \rangle + \langle (I_z - \langle I_z \rangle)^2 \rangle < (N - M)/2$$



При частоте $f_{\text{mod}} = 100 \text{ Hz}$ достигается

Tóth et al., Phys. Rev. Lett. (2007)

спиновое сжатие $\xi_s = 0.48$ и запутанность примерно 25 из 60 спинов Pb

Д. С. Смирнов

Соавторы

А. В. Шумилин

Stefan Institute (Slovenia)

Н. В. Леппенен

Weizmann Institute (Israel)

C2N (France)

Гр. А. А. Торопова, ФТИ им. А.Ф. Иоффе

Гр. М. Байера, TU Dortmund (Германия)

Итоги

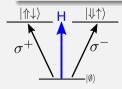
Квантовые точки позволяют запутывать спины фотонов, электронов, дырок и ядер

- Поглощение Н фотона рождает запутанную электрон-дырочную пару
- Биэкситонный каскад рождает пары запутанных фотонов
- Возбуждение триона позволяет запутать много фотонов

Leppenen, D.S.S., arXiv:2404.16025 (2024); Serov et al. (in preparation)

- Запутывание спинов фотона и электрона приводит к квантовому эффекту Зенона
 Leppenen, Lanco, D.S.S., PRB 103, 045413 (2021); Nanoscale 14, 13284 (2022); Nedelea et al., Phys. Rev. Research 5, L032032 (2023)
- **©** Сверхтонкое взаимодействие позволяет создавать сжатые и запутанные спиновые состояния ядер

Shumilin, D.S.S., Phys. Rev. Lett. 126, 216804 (2021); ФТТ 64, 206 (2022); Kirstein et al., Nat. Commun. 14, 6683 (2023)



- lacktriangle Детектирование σ^+ фотона: $m{S}_e(0) = m{e}_z/2$
- 2 Прецессия спина электрона:

$$S_z(t') = \frac{1}{2}\cos(\Omega_e t') \quad S_x(t') = \frac{1}{2}\sin(\alpha)\sin(\Omega_e t') \quad S_y(t') = -\frac{1}{2}\cos(\alpha)\sin(\Omega_e t')$$

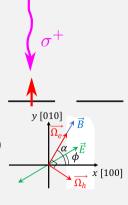
Рождение триона:

$$J_z(t') = S_z(t')$$
 $J_x(t') + iJ_y(t') = [S_x(t') + iS_y(t')]e^{-2i\phi}$

4 Прецессия спина дырки $(t - t' = \tau)$:

$$J_z(t) = J_z(t')\cos(\Omega_h \tau) + J_{x/y}(t')\sin(\alpha)\sin(\Omega_h \tau) + J_{y/x}(t')\cos(\alpha)\sin(\Omega_h \tau)$$

5 Рекомбинация триона: $P(t, \sigma^{-}) = 1/2 - J_z(t)$



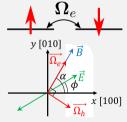
- $lacksymbol{0}$ Детектирование σ^+ фотона: $oldsymbol{S}_e(0) = oldsymbol{e}_z/2$
- 2 Прецессия спина электрона:

$$S_z(t') = \frac{1}{2}\cos(\Omega_e t') \quad S_x(t') = \frac{1}{2}\sin(\alpha)\sin(\Omega_e t') \quad S_y(t') = -\frac{1}{2}\cos(\alpha)\sin(\Omega_e t')$$

Ответие триона:

$$J_z(t') = S_z(t')$$
 $J_x(t') + iJ_y(t') = [S_x(t') + iS_y(t')]e^{-2i\phi}$

- **①** Прецессия спина дырки $(t t' = \tau)$: $J_z(t) = J_z(t')\cos(\Omega_h \tau) + J_{x/y}(t')\sin(\alpha)\sin(\Omega_h \tau) + J_{y/x}(t')\cos(\alpha)\sin(\Omega_h \tau)$
 - $D_{ij} = C_{ij} = D_{ij} = D_{ij} = D_{ij}$
- **5** Рекомбинация триона: $P(t, \sigma^{-}) = 1/2 J_{z}(t)$



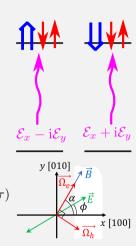
- f O Детектирование σ^+ фотона: ${m S}_e(0)={m e}_z/2$
- 2 Прецессия спина электрона:

$$S_z(t') = \frac{1}{2}\cos(\Omega_e t') \quad S_x(t') = \frac{1}{2}\sin(\alpha)\sin(\Omega_e t') \quad S_y(t') = -\frac{1}{2}\cos(\alpha)\sin(\Omega_e t')$$

- **③** Рождение триона: $J_z(t') = S_z(t') \quad J_x(t') + \mathrm{i} J_y(t') = [S_x(t') + \mathrm{i} S_y(t')] \mathrm{e}^{-2\mathrm{i}\phi}$
- **①** Прецессия спина дырки $(t t' = \tau)$:

$$J_z(t) = J_z(t')\cos(\Omega_h \tau) + J_{x/y}(t')\sin(\alpha)\sin(\Omega_h \tau) + J_{y/x}(t')\cos(\alpha)\sin(\Omega_h \tau)$$

5 Рекомбинация триона: $P(t, \sigma^{-}) = 1/2 - J_{z}(t)$



f 0 Детектирование σ^+ фотона: ${m S}_e(0)={m e}_z/2$

 \bigcap_{Ω_h}

Прецессия спина электрона:

$$S_z(t') = \frac{1}{2}\cos(\Omega_e t')$$
 $S_x(t') = \frac{1}{2}\sin(\alpha)\sin(\Omega_e t')$ $S_y(t') = -\frac{1}{2}\cos(\alpha)\sin(\Omega_e t')$

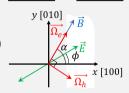
Рождение триона:

$$J_z(t') = S_z(t')$$
 $J_x(t') + iJ_y(t') = [S_x(t') + iS_y(t')]e^{-2i\phi}$

1 Прецессия спина дырки $(t - t' = \tau)$:

$$J_z(t) = J_z(t')\cos(\Omega_h \tau) + J_{x/y}(t')\sin(\alpha)\sin(\Omega_h \tau) + J_{y/x}(t')\cos(\alpha)\sin(\Omega_h \tau)$$

5 Рекомбинация триона: $P(t, \sigma^{-}) = 1/2 - J_{z}(t)$



- lacktriangle Детектирование σ^+ фотона: $S_e(0) = e_z/2$
- Прецессия спина электрона:

$$S_z(t') = \frac{1}{2}\cos(\Omega_e t') \quad S_x(t') = \frac{1}{2}\sin(\alpha)\sin(\Omega_e t') \quad S_y(t') = -\frac{1}{2}\cos(\alpha)\sin(\Omega_e t')$$

Ответие триона:

$$J_z(t') = S_z(t')$$
 $J_x(t') + iJ_y(t') = [S_x(t') + iS_y(t')]e^{-2i\phi}$

① Прецессия спина дырки $(t - t' = \tau)$:

$$J_z(t) = J_z(t')\cos(\Omega_h \tau) + J_{x/y}(t')\sin(\alpha)\sin(\Omega_h \tau) + J_{y/x}(t')\cos(\alpha)\sin(\Omega_h \tau)$$

5 Рекомбинация триона: $P(t, \sigma^{-}) = 1/2 - J_z(t)$

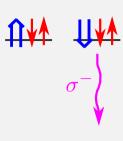


Схема расчёта $g_{+-}^{(2)}(t)$

- f O Детектирование σ^+ фотона: ${m S}_e(0)={m e}_z/2$
- 2 Прецессия спина электрона:

$$S_z(t') = \frac{1}{2}\cos(\Omega_e t')$$
 $S_x(t') = \frac{1}{2}\sin(\alpha)\sin(\Omega_e t')$ $S_y(t') = -\frac{1}{2}\cos(\alpha)\sin(\Omega_e t')$

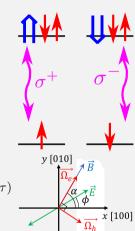
Ответие триона:

$$J_z(t') = S_z(t')$$
 $J_x(t') + iJ_y(t') = [S_x(t') + iS_y(t')]e^{-2i\phi}$

① Прецессия спина дырки $(t - t' = \tau)$:

$$J_z(t) = J_z(t')\cos(\Omega_h\tau) + J_{x/y}(t')\sin(\alpha)\sin(\Omega_h\tau) + J_{y/x}(t')\cos(\alpha)\sin(\Omega_h\tau)$$

5 Рекомбинация триона: $P(t, \sigma^{-}) = 1/2 - J_{z}(t)$



Результат расчёта $g_{+-}^{(2)}(t)$

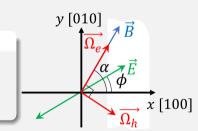
Осцилляции в магнитном поле с частотой Ω_e :

$$g_{+-}^{(2)}(t) = 1 - e^{-t/\tau_0} - \frac{1}{2} \int \frac{d\tau}{\tau_0} e^{-\tau/\tau_0} \left[\cos(\Omega_e(t-\tau)) \cos(\Omega_h \tau) - \lambda \sin(\Omega_e(t-\tau)) \sin(\Omega_h \tau) \right]$$

Корреляционная функция фотонов

зависит от направления поляризации (ϕ) и поля (α) :

- ullet для "кристаллического" механизма: ${\color{blue} \lambda} = -\cos(2\alpha 2\phi)$
- для механических напряжений: $\lambda = -\sin(2\phi)$



Предельные случаи

- $oldsymbol{0}$ В нулевом поле $\mathcal{H} = A I S$
 - Электронный спин прецессирует вокруг ядерного:

$$\frac{\mathrm{d} \mathbf{S}}{\mathrm{d} t} = \mathbf{\Omega}_N \times \mathbf{S}, \quad \mathbf{\Omega}_N = A\mathbf{I}/\hbar$$

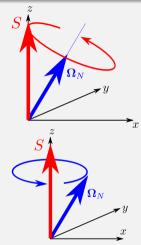
• Сохраняется полный угловой момент

$$F = I + S \approx I = \text{const}$$

- ② В сильном поле $\mathcal{H} = A \mathbf{I} \mathbf{S} + \hbar \Omega_B \mathbf{S}$, $\hbar \Omega_B \gg A I$
 - ullet Качественно Ω_B определяет направление квантования для S
 - Для $S_z = \pm 1/2$ прецессия ядерного спина:

$$\frac{\mathrm{d} \boldsymbol{I}}{\mathrm{d} t} = \frac{A}{\hbar} \boldsymbol{S} \times \boldsymbol{I} = \pm \boldsymbol{\omega}_e \times \boldsymbol{I}, \qquad \boldsymbol{\omega}_e = \frac{A \boldsymbol{e}_z}{2\hbar}$$

$$I_{x,y}(t) = I_{x,y}(0)\cos(\omega_e t), \qquad I_z(t) = I_z(0)$$

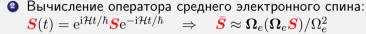


Формализм в общем случае

• Уравнения Гейзенберга в адиабатическом пределе:

$$\frac{\mathrm{d} \mathbf{S}}{\mathrm{d} t} = \mathbf{\Omega}_e \times \mathbf{S}, \qquad \frac{\mathrm{d} \mathbf{I}}{\mathrm{d} t} = \frac{A}{\hbar} \bar{\mathbf{S}} \times \mathbf{I},$$

$$\Omega_e = \Omega_N + \Omega_B$$



$$\frac{\mathrm{d} \boldsymbol{I}}{\mathrm{d} t} = \boldsymbol{\omega}_e \times \boldsymbol{J}, \qquad \frac{\mathrm{d} \boldsymbol{J}}{\mathrm{d} t} = \frac{A\Omega_B \Omega_B}{2\hbar\Omega_e^2} \times \boldsymbol{I}, \qquad \boldsymbol{J} = \frac{2(\Omega_e \boldsymbol{S})\Omega_B \boldsymbol{I}}{\Omega_e^2}$$

$$egin{array}{c} \Omega_e \ \Omega_{
m B} \ \end{array}$$

Система уравнений для $oldsymbol{I}$ и $oldsymbol{J}$

Shumilin, D.S.S., Phys. Rev. Lett. 126, 216804 (2021)

- ullet Учитывает точно коммутационные соотношения для S и не учитывает для I
- ullet Является точной в пределе $I o \infty$

Тот же ответ может быть получен из точной диагонализации гамильтониана

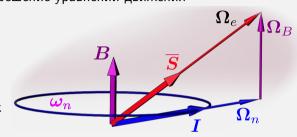
Интерпретация уравнений движения для средних величин

Замена операторов на средние величины и решение уравнений движения

$$I_x(t) = I_x(0)\cos(\omega_n t) - \frac{2\Omega_e S}{\Omega_e} I_y(0)\sin(\omega_n t)$$

$$I_y(t) = I_y(0)\cos(\omega_n t) + \frac{2\Omega_e S}{\Omega_e} I_x(0)\sin(\omega_n t)$$

Компонента спина электрона \bar{S} поперечная к I приводит к прецессии ядерного спина



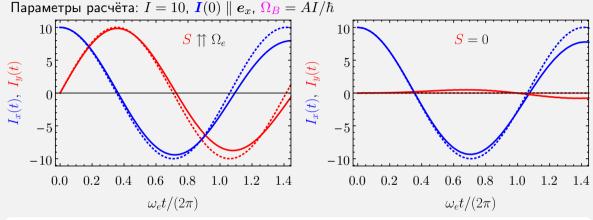
Частота прецессии ядерного спина ${m I}$

$$\boldsymbol{\omega}_n = \frac{A\boldsymbol{\Omega}_B}{2\hbar\boldsymbol{\Omega}_e} = \frac{A\boldsymbol{\Omega}_B}{2|\hbar\boldsymbol{\Omega}_B + A\boldsymbol{I}|}$$

постоянна и определяется ядерным спином $oldsymbol{I}$

В общем случае ядерная спиновая динамика – это суперпозиция вращений с $\pm \omega_n$

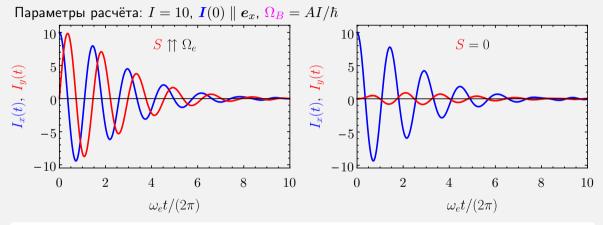
Сравнение с численным расчётом



В зависимости от электронной спиновой поляризации возможна ядерная спиновая прецессия или осцилляции

Аналитическое описание является точным на временах $t \ll \hbar I/A \propto N$

Сравнение с численным расчётом



В зависимости от электронной спиновой поляризации

возможна ядерная спиновая прецессия или осцилляции

Аналитическое описание является точным на временах $t \ll \hbar I/A \propto N$

Анизотропное сверхтонкое взаимодействие

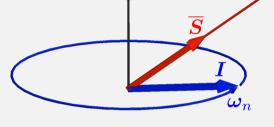
Гамильтониан:
$$\mathcal{H} = A_\parallel I_z S_z + A_\perp (I_x S_x + I_y S_y) + \hbar \Omega_B S_z$$

Частота ядерной спиновой прецессии:

$$oldsymbol{\omega}_n = rac{A_\parallel \hbar oldsymbol{\Omega}_B + (A_\parallel^2 - A_\perp^2) I_z oldsymbol{e}_z}{2 \hbar^2 oldsymbol{\Omega}_{oldsymbol{e}}}$$

$$\mathbf{\Omega}_{e} = (\hbar \Omega_{B} + A_{\parallel} I_{z}) \mathbf{e}_{z} + A_{\perp} (I_{x} \mathbf{e}_{x} + I_{y} \mathbf{e}_{y})$$

В частном случае $A_\perp=0$: $\omega_n=A_\parallel/(2\hbar)$, ядерный спин прецессирует в поле электрона с ${\it S}=\pm e_z/2$

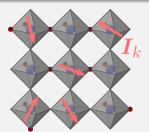


Для анизотропного сверхтонкого взаимодействия

ядерная спиновая прецессия возможна без внешнего поля

Шумилин, Д.С.С., ФТТ (2022)

Спины ядер и дырки в галогенидных перовскитах



Кубические прямозонные полупроводники с "перевёрнутыми" зонами Сверхтонкое взаимодействие локализованной дырки Sи ядер 207 Pb I_k :

Kirstein et al., Adv. Mater. (2021)

$$\mathcal{H}_{\mathrm{h.f.}} = \sum_{k=1}^{N} A_k \boldsymbol{I}_k \boldsymbol{S}$$

$$\mathcal{H}_{
m h.f.}=\sum_{k=1}^{N}A_km{I}_km{S}$$
 $I_k=1/2,~eta=0.22,~\sum_kA_k\sim30~\mu{
m eV},~N\sim10^2$

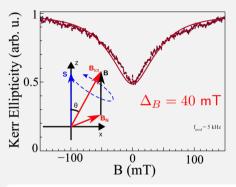
Импульсная оптическая накачка и зондирование спина дырки с интервалом T_R

- Мощные циркулярно поляризованные импульсы накачки поляризуют дырку S_z
- Слабые линейно поляризованные зондирующие импульсы измеряют $\langle S_z \rangle$

v.b.

Релаксация спина дырки на ядерных флуктуациях

Эксперименты гр. М. Байера (TU Dortmund, Germany)



Прецессия в поле Оверхаузера и внешнем поле:

$$rac{\mathrm{d}oldsymbol{S}}{\mathrm{d}t}=rac{g_h\mu_B}{\hbar}(oldsymbol{B_N}+oldsymbol{B}) imesoldsymbol{S}$$

Распределение случайного поля Оверхаузера:

$$\mathcal{F}(\boldsymbol{B}_N) \propto \exp(-B_N^2/2\Delta_{\boldsymbol{B}}^2)$$

$$\Delta_{B} = \sqrt{\sum_{k} A_{k}^{2}}/(g_{h}\mu_{B}) \sim \sqrt{N}A_{k}/(g_{h}\mu_{B})$$

В нулевом поле случайная прецессия приводит к дефазировке спина дырки

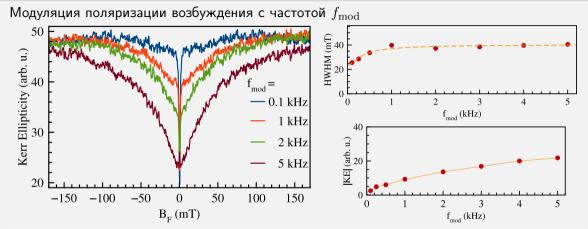
Продольное магнитное поле подавляет случайную прецессию

и восстанавливает спиновую поляризацию дырки:

$$S_z = S_0 \left(1 - \frac{2}{3} \frac{\Delta_B^2}{B^2 + \Delta_D^2} \right)$$

Merkulov, Efros, Rosen, Phys. Rev. B (2002) Petrov et al., Phys. Rev. B (2008)

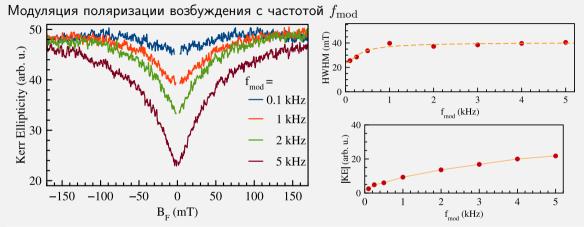
Подавление эффекта восстановления поляризации



При низких частотах модуляции поляризации

пропадает провал в спиновой поляризации в нулевом магнитном поле (без существенной поляризации ядер, $\langle {m B}_N
angle \ll \Delta_B
angle$)

Подавление эффекта восстановления поляризации



При низких частотах модуляции поляризации

пропадает провал в спиновой поляризации в нулевом магнитном поле (без существенной поляризации ядер, $\langle {m B}_N \rangle \ll \Delta_B$)

Теоретическая модель

• Приближение "ящика": $\mathcal{H} = A \mathbf{I} \mathbf{S} + g_h \mu_B \mathbf{B} \mathbf{S}, \quad \mathbf{I} = \sum_{k=1}^{N} \mathbf{I}_k$ нет диполь-дипольных и квадрупольных взаимодействий и $\mu_N=0$

Рябченко, Семёнов, ЖЭТФ (1983) • Импульсное возбуждение и периодом T_R : Yugova et al., Phys. Rev. В (2009)

буждение и периодом
$$T_R$$
: Yugova et al., Phys. Rev. В (2009) $m{S}^{
m after}=(1-\Gamma_0)m{S}^{
m before}+\Gamma_0S_0(t)m{e}_z$

 Γ_0 — вероятность рождения триона, $S_0(t)$ — создаваемый спин

Сохраняется полный ядерный спин
$$I \sim \sqrt{N}$$

функция распределения:
$$f(I) = (2I+1)(C_N^{N/2-I} - C_N^{N/2-I-1})/2^N$$

Собственные волновые функции:

$$\mathcal{A}_+(I_z) = -\mathcal{B}_-(I_z) = rac{\Omega_x}{\sqrt{2\Omega(\Omega + \Omega_z)}}, \quad \mathcal{A}_-(I_z) = \mathcal{B}_+(I_z) = \sqrt{rac{\Omega + \Omega_z}{2\Omega}},$$

$$\Omega_x = \frac{A}{\hbar} \sqrt{I(I+1) - I_z(I_z+1)}, \quad \Omega_y = 0, \quad \Omega_z = \Omega_L + \frac{A}{\hbar} (I_z+1/2)$$

Козлов, ЖЭТФ (2007) $\Psi_{+}(I_z) = \mathcal{A}_{+} |I, I_z, \uparrow\rangle + \mathcal{B}_{+} |I, I_z + 1, \downarrow\rangle$ Д. С. Смирнов Запутывание спинов в квантовых точках

Спиновая динамика ядер

Когерентность между состояниями $\Psi_+(I_z)$ и $\Psi_-(I_z)$ теряется за время $T_2^* \sim \hbar/(AI) \ll T_R$, остаются лишь диагональные элементы матрицы плотности $f(t,I,I_z)$

Модификация функции распределения после переворота спина дырки $\uparrow \to \downarrow$:

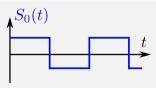
$$f(t+T_R, I, \underline{I_z}) = (1-v)f(t, I, \underline{I_z}) + vf(t, I, \underline{I_z} - 1)$$

вероятность поворота ядерной флуктуации: $v=rac{A^2(I^2-I_z^2)/2}{A^2(I^2-I_z^2)+(AI_z+g_h\mu_BB)^2}$

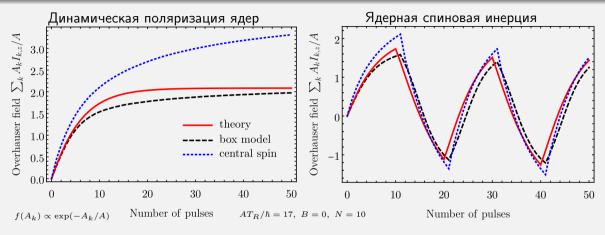
Кинетическое уравнение Фоккера-Планка в континуальном пределе:

$$\frac{T_R}{\Gamma_0}\frac{\partial f}{\partial t} = 2S_0(t)\frac{\partial}{\partial I_z}(vf) + \frac{\partial}{\partial I_z}\left(\frac{v}{2}\frac{\partial f}{\partial I_z}\right)$$

Спиновая поляризация дырки для неравновесного распределения спинов ядер: $S_z(t) = S_0(t) \left\langle I_z^2/I^2 \right\rangle$



Ядерная спиновая поляризация и инерция



Спиновые флуктуации $\sim \sqrt{N}$ быстро ориентируются оптическими импульсами

Полная поляризация $I_z=N/2$ требует разброса констант A_k и достигатся медленно

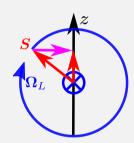
Квантовый эффект Зенона

Э Летящая стрела неподвижна, так как в каждый момент времени она занимает равное себе положение, то есть покоится; поскольку она покоится в каждый момент времени, то она покоится во все моменты времени, то есть не существует момента времени, в котором стрела совершает движение [Aristotle, Physics (350BCE)]

etaффект Зенона для измерения прецессии спина ($\mathcal{H}=\hbar\Omega_L S_x$):

- lacktriangledown Без измерений: $S_z(t) = S_z(0)\cos(\Omega_L t)$
- Измерения фон Неймана (проективные):
 коллапс волновой функции в состояние ↑ или ↓
- 3 После N измерений с интервалами au=t/N:

$$\underline{S_z(t)} = S_z(0) \left[\cos(\Omega_L \tau)\right]^N = S_z(0) \left[1 + o(\Omega_L t/N)\right]^N \xrightarrow{N \to \infty} \underline{S_z(0)}$$



В пределе непрерывных измерений спиновая прецессия невозможна

Халфин, ЖЭТФ (1958); Misra, Sudarshan, J. Math. Phys. (1977)

Квантовый эффект Зенона для спинов локализованных электронов ранее не изучался

Учёт измерений в динамике спина в квантовой точке

Непрерывное измерение спина электрона S_z линейно поляризованным светом по фарадеевскому вращению $\theta_F(t) \propto S_z(t)$

Аронов, Ивченко ФТТ (1973); измерение флуктуаций: Д.С.С. и др., УФН 191, 973 (2021)

• Уравнение для спиновой динамики с учётом измерений:

$$\frac{\mathrm{d}\mathbf{S}}{\mathrm{d}t} = \mathbf{\Omega}_N \times \mathbf{S} - \frac{\mathbf{S}}{\tau_s} - 2\lambda (S_x \mathbf{e}_x + S_y \mathbf{e}_y)$$

$$\Omega_N = \sum_k A_k I_k / \hbar$$
 — случайное поле ядерных спиновых флуктуаций au_s — скорость спиновой релаксации, не связанная с ядрами

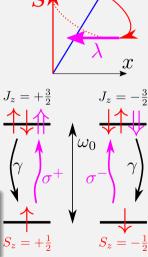
 λ — феноменологическая сила измерения

• Микроскопика процесса измерения:

$$-\mathbf{dE}(t) = d_{c.v.} E e^{-i\omega t} / \sqrt{2} (a_{+3/2}^{\dagger} a_{+1/2} + a_{-3/2}^{\dagger} a_{-1/2}) + H.c.$$

Результат для силы измерения:
$$\lambda = \frac{|E^2||d_{c.v.}^2|\gamma}{2\hbar^2\left[(\omega-\omega_0)^2+\gamma^2\right]}$$

 ω_0 — частота резонанса; γ — темп спонтанной рекомбинации



Квантовые эффекты Зенона в квантовых точках

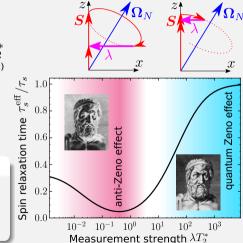
Усреднение решения уравнений спиновой динамики по функции распределения поля ядер $\mathcal{F}(\Omega_N) \propto \exp\left[-2\left(\Omega_N T_2^*\right)^2\right]$ даёт эффективное время спиновой релаксации $au_s^{\mathrm{eff}}(\lambda)$

Зависимость от мощности света:

- ① $\lambda \to 0$: спиновые флуктуации ядер приводят к потере 2/3 поляризации электрона за время T_2^* Меrkulov, Efros, Rosen, Phys. Rev. B (2002)
- $\lambda \to \infty$: сильные непрерывные измерения подавляют спиновую прецессию и релаксацию
- $\lambda \sim 1/T_2^*$: проецирование спина на ось z за время $\sim T_2^*$ ускоряет спиновую релаксацию

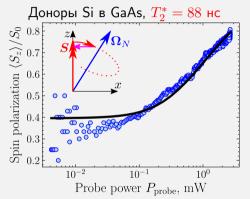
Измерение спинов электронов может приводить к

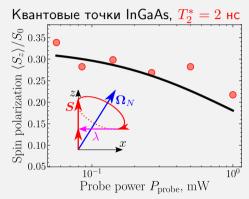
- квантовому эффекту Зенона (замедлению спиновой релаксации)
- эффекту анти-Зенона (ускорению релаксации)



Экспериментальная реализация обоих эффектов

Предсказания подтверждены экспериментально в гр. М. Байера (Дортмунд, Германия), но в режиме импульсной ориентации и измрения спинов с периодом $T_R=1$ нс





Мощные зондирующие импульсы могут приводить к увеличению спиновой поляризации (эффект Зенона, $T_R \ll T_2^*$) или её уменьшению (эффект анти-Зенона, $T_R \sim T_2^*$)

V. Nedelea, N.V. Leppenen, E. Evers, D.S.S., M. Bayer, and A. Greilich, Phys. Rev. Research 5, L032032 (2023)

Оптическое измерение одиночного спина

Нульмерный микрорезонатор с заряженной квантовой точкой

Особенности системы:

- Быстрая ориентация и управление спином циркулярно поляризованными импульсами D.S.S. et al., Phys. Rev. B (2015)
- Макроскопические спиновые сигналы: $\theta_F = \pm 90^\circ$; $T_{+,\uparrow} = 1$, $T_{-,\uparrow} = 0$
 - Mehdi et al., Nat. Commun. (2024)

• Узел создания спин-фотонного запутывания

"Практическое" применение

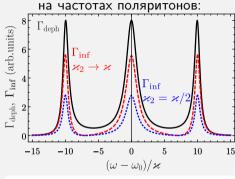
D.S.S. et al, Phys. Rev. B (2017)

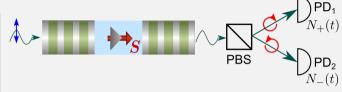
Квантовое обратное действие позволяет инициализировать спин электрона сильными проективными измерениями

Cogan et al., Nat. Photon. (2023); Coste et al., Nat. Photon. (2023)

Накопление квантовой информации

Сила измерения λ имеет резонансы





• Условные спиновые вероятности $P_{\uparrow,\downarrow}(t)$ определяют "информационную энтропию":

$$\mathcal{I}(t) = -\langle P_{\uparrow}(t) \ln P_{\uparrow}(t) + P_{\downarrow}(t) \ln P_{\downarrow}(t) \rangle$$

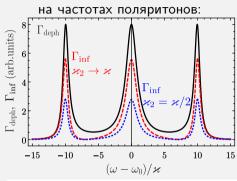
ullet Темп накопления информации: $\Gamma_{\inf} \equiv -\,\dot{\mathcal{I}}(0)$

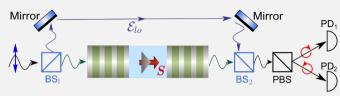
Всегда $\Gamma_{\inf} \leq \Gamma_{\mathrm{deph}} = 2\lambda$ Clerk et al., Rev. Mod. Phys. (2010)

f 0 $\Gamma_{
m inf}$ в 2 раза больше для асимметричного резонатора

Накопление квантовой информации

Сила измерения λ имеет резонансы





• Условные спиновые вероятности $P_{\uparrow,\downarrow}(t)$ определяют "информационную энтропию": $\mathcal{I}(t) = -\langle P_{\uparrow}(t) \ln P_{\uparrow}(t) + P_{\downarrow}(t) \ln P_{\downarrow}(t) \rangle$

$$\mathcal{L}(t) = -\langle P_{\uparrow}(t) \text{ if } P_{\uparrow}(t) + P_{\downarrow}(t) \text{ if } P_{\downarrow}(t) \rangle$$

ullet Темп накопления информации: $\Gamma_{\inf} \equiv -\dot{\mathcal{I}}(0)$

Всегда $\Gamma_{\inf} \leq \Gamma_{\mathrm{deph}} = 2\lambda$ Clerk et al., Rev. Mod. Phys. (2010)

- f 0 Γ_{inf} в 2 раза больше для асимметричного резонатора
- ② Гомодинирование позволяет достичь квантового предела $\Gamma_{
 m inf} = \Gamma_{
 m deph}$ при любой ω
- $oldsymbol{\circ}$ Это позволяет найти силу измерения $oldsymbol{\lambda} = |t_{+,\uparrow} t_{-,\uparrow}|^2 \mathcal{E}^2/arkappa$

N.V. Leppenen, L. Lanco, D.S.S., Phys. Rev. B 103, 045413 (2021)