

Russian Science Foundation

Орбитальные степени свободы в непроводящих соединениях переходных металлов

Sergey V. Streltsov

Institute of metal physics Ekaterinburg, Russia

Russian Academy of Sciences

Materials under consideration

Insulators

- localized electrons
- not-completely filled *d*or *f*-shell

Or materials with the metal-insulator transition

Examples: NiO, LaMnO₃, La₂CuO₄ etc.

Introduction: *d*-orbitals in a crystal, cubic harmonics

Directed away from ligands

Orbital degrees of freedom

Spin degrees of freedom

Math: spin operators $\hat{\vec{S}}$ for s = 1/2 $\langle \downarrow | \hat{S}^z | \downarrow \rangle = -1/2$ $\langle \uparrow | \hat{S}^z | \uparrow \rangle = 1/2$

e.g. Cu^{2+} $e_g = 3z^2 - y$

pseudospin operators $\hat{\vec{\tau}}$

 $\langle x^2 - y^2 | \hat{\tau}^z | x^2 - y^2 \rangle = -1/2$

 $\langle z^2 | \hat{\tau}^z | z^2 \rangle = 1/2$

t_{2g}

Ligands

Orbital degrees of freedom

Orbital degrees of freedom

3. Spin-orbit coupling - lecture on Sunday

Interplay of different degrees of freedom:

Jahn-Teller effect

Jahn-Teller effect in a nutshell

by distorting surrounding

"Orbital-lattice" coupling

Normal vibration modes (octahedron)

	Mode	Transformation properties	Displacements			
	Q_1	A_{1g}	$[(x_1 - x_4) + (y_2 - y_5) + (z_3 - z_6)]/\sqrt{16}$			
1	$egin{array}{c} Q_2 \ Q_3 \end{array}$	$E_g \begin{array}{c} \varepsilon, \ x^2 - y^2 \\ \theta, \ 3z^2 - r^2 \end{array}$	$[(x_1 - x_4) - (y_2 - y_5)]/2$ $[2(z_3 - z_6) - (x_1 - x_4) - (y_2 - y_5)]/\sqrt{12}$			
	$egin{array}{c} Q_4 \ Q_5 \ Q_6 \end{array}$	$\begin{array}{c} \xi, yz \\ T_{2g} \eta, zx \\ \zeta, xy \end{array}$	$[(z_2 - z_5) + (y_3 - y_6)]/2$ $[(x_3 - x_6) + (z_1 - z_4)]/2$ $[(y_1 - y_4) + (x_2 - x_5)]/2$			
5	$egin{array}{c} Q_7 \ Q_8 \ Q_9 \end{array}$	$\begin{array}{ccc} x \\ T_{1u} & y \\ z \end{array}$	$[x_{2} + x_{3} + x_{5} + x_{6}]/2$ $[y_{1} + y_{3} + y_{4} + y_{6}]/2$ $[z_{1} + z_{2} + z_{4} + z_{5}]/2$			
	$egin{array}{c} Q_{10} \ Q_{11} \ Q_{12} \end{array}$	$\begin{array}{ccc} x \\ T_{1u} & y \\ z \end{array}$	$\begin{array}{l} [x_1 + x_4]/\sqrt{2} \\ [y_2 + y_5]/\sqrt{2} \\ [z_3 + z_6]/\sqrt{2} \end{array} \qquad $			
		•••				

 $E_{JT} = \pm g \left| \delta \right| + \frac{B\delta^2}{2}$

g

Introduction: Jahn-Teller $e \otimes E$ **problem** for an isolated octahedron

Harmonic approximation: Highly degenerate ground state

Introduction: Jahn-Teller $e \otimes E$ problem

for an isolated octahedron

Harmonic approximation

$$|\theta\rangle = \cos(\theta)Q_3 + \sin(\theta)Q_2$$
$$|\theta\rangle = \cos(\theta/2) |z^2\rangle + \sin(\theta/2) |x^2 - y^2\rangle$$

Anharmonicity

Claimed compressed

NaMn₇O₁₂Nature Mat. 3, 48 (2004)Cs₂CuCl₂Br₂Cryst. Gr. Des. 10, 4456 (2010)

Turned out elongated

PRB 89, 201115 (2014) PRB 86, 035109 (2012)

Elongated octahedra!

 O_2

 Q_2

Most of octahedra with *e*_g-ions (Cu²⁺, Mn³⁺) are elongated!

Cooperative Jahn-Teller distortions

(electron-lattice mechanism of orbital ordering)

Interplay of different degrees of freedom:

Exchange interaction Kugel-Khomskii-like models

Mott-Hubbard transition in a nutshell

Localized electrons and correlation effects

Many-band Hubbard model:

$$\begin{split} H_{K} &= U \sum_{m} n_{m\uparrow} n_{m\downarrow} + U' \sum_{m \neq m'} n_{m\uparrow} n_{m'\downarrow} + (U' - J_{H}) \sum_{m < m',\sigma} n_{m\sigma} n_{m'\sigma} \\ &- J_{H} \sum_{m \neq m'} c^{\dagger}_{m\uparrow} c_{m\downarrow} c^{\dagger}_{m'\downarrow} c_{m'\uparrow} + J_{H} \sum_{m \neq m'} c^{\dagger}_{m\uparrow} c^{\dagger}_{m\downarrow} c_{m'\downarrow} c_{m'\uparrow} \\ H_{U} &= \left(4J_{H} - \frac{U}{2} \right) \hat{N} + (U - 3J_{H}) \frac{\hat{N}^{2}}{2} - J_{H} \left(2\hat{S}^{2} + \frac{\hat{L}^{2}}{2} \right) \end{split}$$

John Hubbard

3-band model in non-standard notations

Polar model (Shubin-Vonsovski)

Electron correlations in narrow energy bands

By J. HUBBARD Theoretical Physics Division, A.E.R.E., Harwell, Didcot, Berks

(Communicated by B. H. Flowers, F.R.S.-Received 23 April 1963)

On the Electron Theory of Metals.

By S. SCHUBIN and S. WONSOWSKY.

Sverdlovsk Physical Technical Institute.

V. Irkhin, S.S. JSNM 35, 2135 (2022)

(Communicated by R. H. Fowler, F.R.S.-Received December 29, 1933.)

Introduction: Orbitals and spins

Heisenberg model:

 $\hat{H} = J \sum \hat{\vec{S}}_i \hat{\vec{S}}_j$ i≠i

strong AFM

AntiFerro-orbital order

Modification of magnetic structure by orbitals

Goodenough - Kanamori - Anderson rules connect orbitals and spins

=> AFM

 \Rightarrow FM

 \Rightarrow FM

John Goodenough 1922-2023 Nobel prize 2019

Junjiro Kanamori 1930-2012

Philip Anderson 1923-2020 Nobel prize 1977

Goodenough - Kanamori - Anderson rules connect orbitals and spins

Important general trend in insulating transition metal oxides

This is the reason why most of <u>insulating</u> transition metal oxides with localized electrons are AFM

	T_C	AFM		T_N	Heff	
YTiO ₃	30 K		NiO	520 K	$4.6\mu_B$	AFM-II
BaNaOs ₂ O ₆	7 K		CoO	291 K	$5.1\mu_B$	AFM-II
NaCrGe ₂ O ₆	6 K		KNiF ₃	$275~{ m K}$	$4.7\mu_B$	Г
			$LaFeO_3$	$750~{ m K}$	$3.0-4.4\mu_B$	Г
			FeS	600 K	$5.25\mu_B$	Г

Orbitals and spins: Kugel-Khomskii model and exchange mechanism of orbital ordering

Two levels with hoppings between the same orbitals

Pseudo-spin operators:

 $\hat{\tau^{z}} | 1 \rangle = 1/2 | 1 \rangle$ $\hat{\tau^{z}} | 2 \rangle = -1/2 | 2 \rangle$

Kugel-Khomskii Hamiltonian:

 $\hat{H}_{KK} = \sum_{i \neq j} J_{ij}^{S} \hat{\mathbf{S}}_{i} \cdot \hat{\mathbf{S}}_{j} + J_{ij}^{\tau} \hat{\tau}_{j} \hat{\tau}_{j} + 4J_{ij}^{S\tau} (\hat{\mathbf{S}}_{i} \cdot \hat{\mathbf{S}}_{j}) (\hat{\tau}_{i} \hat{\tau}_{j}), \quad J^{S} = \frac{2t^{2}}{U} \left(1 - \frac{J_{H}}{U}\right), \quad J^{\tau} = J^{S\tau} = \frac{2t^{2}}{U} \left(1 + \frac{J_{H}}{U}\right)$

The maximum energy gain is when electrons occupy <u>different</u> orbitals

Electrons can decide by themselves (without lattice), which orbitals to occupy

Exchange mechanism of orbital order

Hubbard model:

$$\hat{H} = \sum_{i \neq j} t_{ij}^{ab} c_{ia\sigma}^{\dagger} c_{jb\sigma} + \frac{1}{2} \sum_{i} U_{ab} n_{ia\sigma} n_{ib\sigma'} \left(1 - \delta_{ab} \delta_{\sigma\sigma'} \right) \\ - \sum_{i,a \neq b} J_{H}^{ab} \left(c_{ia\sigma}^{\dagger} c_{ia\sigma'} c_{ib\sigma'}^{\dagger} c_{ib\sigma} + c_{ia\sigma}^{\dagger} c_{ib\sigma} c_{ia\sigma'}^{\dagger} c_{ib\sigma'} \right) \\ \downarrow$$

Kugel-Khomskii model derivation

 $\tau^z \lambda$

Let's consider a lattice with two orbitals at each site

Hamiltonian describing exchange interaction can by obtained by the 2nd order of perturbation theory with respect to electron hopping

Approximations:

A.
$$\overline{+} = \overline{-} = \overline{+}$$
$$t_{++} = t_{--} = t$$
$$\lambda = \lambda' \quad \lambda'' = \lambda'''$$

B. $\langle \hat{H}_1 \rangle = \tilde{U}$ we don't distinguish energies of different excited states

Kugel-Khomskii model derivation

$$\hat{H}_{eff} = -\sum_{i \neq j} \sum_{\lambda \lambda'} \sum_{\sigma \sigma'} \frac{t^2}{\tilde{U}} c^{\dagger}_{i\lambda\sigma} c_{j\lambda\sigma} c^{\dagger}_{j\lambda'\sigma'} c_{i\lambda'\sigma'} = -\sum_{i \neq j} \sum_{\lambda \lambda'} \frac{t^2}{\tilde{U}} \left(\sum_{\sigma} c^{\dagger}_{i\lambda\sigma} c_{i\lambda'\sigma} (1 - c^{\dagger}_{j\lambda'\sigma} c_{j\lambda\sigma}) - \sum_{\sigma \neq \sigma'} c^{\dagger}_{i\lambda\sigma} c_{i\lambda'\sigma'} c_{j\lambda'\sigma'} c_{j\lambda\sigma} \right)$$

 $c_{i-}^{\dagger}c_{i-} = \hat{n}_{i-} = 1/2 - \hat{\tau}_{i}^{z}, \quad c_{i-}^{\dagger}c_{i+} = \hat{\tau}_{i-}^{-}$ $c_{i\downarrow}^{\dagger}c_{i\downarrow} = \hat{n}_{i\downarrow} = 1/2 - \hat{S}_i^z, \quad c_{i\downarrow}^{\dagger}c_{i\uparrow} = \hat{S}_i^$ i.e. e.g. what $c_{i\uparrow+}^{\dagger}c_{i\downarrow-}$ does? It acts in both spin and orbital spaces raising both spin and pseudospin

Spin space (spins)

 $c_{i\uparrow}^{\dagger}c_{i\uparrow} = \hat{n}_{i\uparrow} = 1/2 + \hat{S}_{i}^{z}, \quad c_{i\uparrow}^{\dagger}c_{i\downarrow} = \hat{S}_{i}^{+}$

 $\hat{H}_{eff} = \sum \hat{H}_{++} + \hat{H}_{+-} + \hat{H}_{-+} + \hat{H}_{--}$ $i \neq j$ $\lambda = +, \lambda' = +$

Expand the sum over orbitals explicitly

Orbital space (pseudospins)

 $c_{i+}^{\dagger}c_{i+} = \hat{n}_{i+} = 1/2 + \hat{\tau}_{i}^{z}, \quad c_{i+}^{\dagger}c_{i-} = \hat{\tau}_{i}^{+}$

$$\hat{H}_{\pm\pm} = -\frac{t^2}{\tilde{U}} \left(\frac{1}{2} \pm \hat{\tau}_i^z\right) + \frac{t^2}{\tilde{U}} \left(\frac{1}{2} \pm \hat{\tau}_i^z\right) \left(\frac{1}{2} \pm \hat{\tau}_j^z\right) \left[\frac{1}{2} \pm \hat{\tau}_j^z\right] \left[\frac{1}{2} + 2\hat{\vec{S}}_i\hat{\vec{S}}_j\right], \quad \hat{H}_{\pm\mp} = \frac{t^2}{\tilde{U}}\hat{\tau}_i^{\pm}\hat{\tau}_j^{\mp} \left[\frac{1}{2} + 2\hat{\vec{S}}_i\hat{\vec{S}}_j\right]$$

Highly (and not really) symmetric Kugel-Khomskii model

$$\hat{H}_{KK} = \frac{t^2}{\tilde{U}} \sum_{i \neq j} \left(\frac{1}{2} + 2\hat{\vec{\tau}}_i \hat{\vec{\tau}}_j \right) \left[\frac{1}{2} + 2\hat{\vec{S}}_i \hat{\vec{S}}_j \right] + C$$

so-called *SU(4)* symmetric Kugel-Khomskii model

Assume spins are coupled ferromagnetically, i.e. $\langle \hat{S}_i^z \hat{S}_j^z \rangle = 1/4$ In a mean-field $E_{AFM} = \frac{t^2}{\tilde{U}} \sum_{i \neq j} \left(\frac{1}{2} + 2 \langle \hat{\tau}_i^z \hat{\tau}_j^z \rangle \right)$ Minimum at $\langle \hat{\tau}_i^z \hat{\tau}_j^z \rangle = -1/4$ i.e. antiferro-orbital ordering*

Kugel-Khomskii model (perovskite with *eg*-electrons)

$$\begin{split} H_{abb} &= \frac{t^{2}}{U} \sum_{(i, j)_{x}} \left\{ 8S_{i}S_{j} \left[\tau_{i}^{z}\tau_{j}^{z} \left(1 + \frac{J_{H}}{U} \right) + \tau_{j}^{z} + \frac{1}{4} \left(1 - \frac{J_{H}}{U} \right) \right] + \\ &+ 2 \left[\tau_{i}^{z}\tau_{j}^{z} \left(1 + \frac{J_{H}}{U} \right) - \tau_{j}^{z} \right] \right\} + \frac{t^{2}}{U} \sum_{(i, -i)} \left\{ 2S_{i}S_{j} \left[\tau_{i}^{z}\tau_{j}^{z} \left(1 + \frac{J_{H}}{U} \right) \right] \\ &- 2\tau_{j}^{z} + \left(1 - \frac{J_{H}}{U} \right) \pm 2\sqrt{3} \left(1 + \frac{J_{H}}{U} \right) \tau_{i}^{z}\tau_{j}^{x} \mp 2\sqrt{3}\tau_{j}^{x} + \\ &+ 3 \left(1 + \frac{J_{H}}{U} \right) \tau_{i}^{x}\tau_{j}^{x} \right] + \frac{1}{2} \left[\tau_{i}^{z}\tau_{j}^{z} \left(1 + \frac{J_{H}}{U} \right) - \\ &- 2\tau_{j}^{z} \pm 2\sqrt{3} \left(1 + \frac{J_{H}}{U} \right) \tau_{i}^{z}\tau_{j}^{x} \pm 2\sqrt{3}\tau_{j}^{x} + 3 \left(1 + \frac{J_{H}}{U} \right) \tau_{i}^{z}\tau_{j}^{x} \right] \right\} \end{split}$$

* Mean-field approximation is a very poor approach in a general case, see e.g. PRL 82, 836 (1998)

Kugel-Khomskii model: realization of a highly symmetric model

$$\hat{H}_{eff} = \sum_{i \neq j, k \neq l} \sum_{\{\lambda\}} \sum_{\sigma\sigma'} \frac{t_{\lambda\lambda'} t_{\lambda''\lambda'''}}{E_0 - \langle H_1 \rangle} c^{\dagger}_{i\lambda\sigma} c_{j\lambda'\sigma} c^{\dagger}_{k\lambda''\sigma'} c_{l\lambda'''\sigma'}$$

Excited level spectrum $\langle H_1 \rangle$ and a hopping structure $t_{ij}^{\lambda\lambda'}$ are the origin of all complications!

M. Yamada et al., PRL 121, 97201 (2018)

Note also possibility of dimerization A. Ushakov, I. Solovyev, S.S., JETP Letters 112, 642 (2020)

Interplay of different degrees of freedom:

Some examples

Example 1: 3-band Hubbard model with 1 electron on the square lattice (= Sr₂VO₄)

P. Igoshev, V. Irkhin, S.S. arXiv:2406.07386

Example 2: Reduction of dimensionality Modulation of the exchange interaction

Ferro-orbital => AFM strong

Antiferro-orbital => FM $J_F \approx -\frac{2t^2 J_H}{U^2}$ weak

90° via orthogonal *p*-orbitals => FM $J_F \approx -\frac{2t^2 J_H}{U^2}$ weak

Example 2: Reduction of dimensionality Modulation of the exchange interaction

KCuF₃ - One of the best 1D antiferromagnet !!!

Orbitals reduce dimensionality: 3D ---- 1D

Example 3: Dimerization driven by orbital ordering

Orbitals reduce dimensionality: 1D --- 0D

Example 4: Formation of a Haldane chain due to orbital ordering

ordering: (LDA+U) Ru⁴⁺

AFM chain S=1: Haldane chains

S. Lee, S.S. et al., Nature Material 5, 471 (2006)

Orbitals reduce dimensionality: 3D 1D

Directional character of orbitals:

Electronic structure: Orbital-selective Mott transition

Directional character of orbitals

 t_{2g} orbitals on the square lattice

Orbitals can have a very different dispersion, which can be reflected on e.g. transport properties

Orbital-selective Mott (OSM) transition

Orbital-selective Mott transition: Mott transition can occur separately for different orbitals

Critical U_c : 1.5 eV for xz/yz orbitals 2.5 eV for xy orbital

Anisimov et al., Eur. Phys. J. B 25, 191 (2002)

Orbital-selectivity: ,α,σ effect of Hund's coupling and orbital mixing $\alpha = 1, 2$ t_{α}

 $R = t_2/t_1$

 $R \leq 1$

2D Square lattice, two orbitals, $h_{alf}^{\mathcal{H}}$ -filling (2 electrons/site)

 $\mathcal{H} = \mathcal{H}_{kin} + \mathcal{H}_{int}$ α - orbital index $\mathcal{H}_{\mathrm{kHr}} = -\sum_{\langle i,j \rangle, \alpha, \sigma} t_{\alpha} c_{i,\alpha,\sigma}^{\dagger} c_{j,\alpha,\sigma} + \mathrm{h.c.},$ Metal \mathcal{H} $\uparrow \alpha \sigma \qquad \sum_{\langle \rangle} \mathcal{H}_{int} = U \sum_{i,\alpha} n_{i,\alpha,\uparrow} n_{i,\alpha,\downarrow} + U' \sum_{i,\sigma,\sigma'} n_{i,1,\sigma} n_{i,2,\sigma'}$ $-J_{H}\sum_{i,\sigma,\sigma'}c_{i,1,\sigma}^{\dagger}c_{i,1,\sigma'}c_{i,2,\sigma'}c_{i,2,\sigma} - J_{H}\sum_{i}(c_{i,1,\uparrow}^{\dagger}c_{i,1,\downarrow}c_{i,2,\uparrow}c_{i,2,\downarrow} + \text{h.c.})$ $\alpha = 1, 2 \stackrel{R \leqslant 1}{\overset{i,\sigma,\sigma'}{\cdot}}$ $\alpha = 1, 2 \qquad t_{\alpha} \qquad R \leq 1$ Effect of orbital mixing $\begin{pmatrix} R \leq 1 \\ t_{mm'} \neq 0 \end{pmatrix}$ $U_{\text{MIT}/t_1} = (\frac{1}{4}5) + Destabilization of the Orbital-selective Mott state$ $U_{\rm MIT}/t_1 \sim 4$ Effect of the Hund's coupling: $U/W \simeq 1.3$ (1) Stabilization of Mott phase (2) Stabilization of the Orbital-selective Mott state Tocchio et al., JPCM 28, 105602 (2016) 33

Orbital-selective Mott (OSM) transition

OSM transition is possible even in the case of the same bandwidths

With J we increase energy difference between high-spin and low-spin configurations (and suppress orbital fluctuations) IS

Directional character of orbitals:

Orbital-selectivity and magnetic properties

Double exchange as an orbital-selective effect

Double exchange is a natural realization of the orbital-selectivity

<u>Itinerant electrons</u> (e.g. e_g electrons)

<u>Localized electrons (e.g. t_{2g} electrons)</u>

No energy gain due to hoppings!

AFM

→>

†↓†↓†↓

FM

 $\delta E_{DE} \sim - W x/2$

Double-exchange mechanism of ferromagnetism

C. Zener, Phys. Rev. 82, 403 (1951) **Examples:**

CrO₂, CMR manganates etc.

Orbital-selective behaviour: localized and itinerant magnetism on the same ion

Extreme case: Orbital-selectivity in low-dimensional magnets

c and d orbitals "work" at different T

c and d orbitals "work" at different B^{38}

Directional character of orbitals:

Orbitally-induced Peierls transition

Peierls transition - simplest case of 1D + half-filling (1 electron/site)

Instability at $|Q| = 2k_F$ Half-filling: $|k_F| = \pi/2a$, $|Q| = \pi/a$ Gain in kinetic energy: $\sim - |\Delta|^2 \ln |\Delta|$ Loss in elastic energy: $\sim |\Delta|^2$

Physical mechanism: nesting of the Fermi surface

$$\begin{split} \chi_0'(\overrightarrow{Q},\omega=0) &= \\ &= \frac{1}{\Omega} \sum_{\vec{k}} \frac{f(\varepsilon(\vec{k})) - f(\varepsilon(\vec{k}+\overrightarrow{Q}))}{\varepsilon(\vec{k}) - \varepsilon(\vec{k}+\overrightarrow{Q})} \end{split}$$

Factor I: lattice deformations are possible for other fillings!

Peierls transition - away from half-filling

Peierls transition: 1D chain

quarter-filling (1/2 electron/site):

 $|k_F| = \frac{\pi}{4a} \quad |Q| = \frac{\pi}{2a}$ $\varepsilon(k)$ I. $-\frac{\pi}{a}$ $\frac{\pi}{a}$ $\frac{\pi}{4a}$ π Tetramerization a

Instability at $|Q| = 2k_F$

1/3 electron/site:

$$|k_F| = \frac{\pi}{3a} \quad |Q| = \frac{2\pi}{3a}$$

Peierls transition - importance of orbital degrees of freedom

Factor II: Orbital-selectivity with respect to Peierls transition

E.g. edge-sharing geometry

xy

xz/yz

- Wide nearly 1D bands susceptible to Peierls transition
- Localized bands susceptible to *U*;
- Crystal-field can strongly change position of the band;

Orbitally-induced Peierls effect: Kagome lattice Na₂Ti₃Cl₈: Ti²⁺: d² (S=1)

D. Khomskii, T. Mizokawa, S.S. PRL 127, 049701 (2021) 43

Orbitally-induced Peierls: another lattice, but again trimerization

Orbitally-induced Peierls effect: Triangular lattice ReS₂: diamond necklace

Reduction of dimensionality Orbitally-induced Peierls effect

Spinels (3D structure): AB₂O₄

Natural formation of 1D bands due to orbitals...

Orbitally induced Peierls effect: Tetramerization in spinel CuIr₂S₄

Khomskii and Mizokawa, PRL 94, 156402 (2005) **47** **Orbitally induced Peierls effect:** Tetramerization in spinel CuIr₂S₄

Reduction of dimensionality due to orbital degrees of freedom

Other examples

$1D \rightarrow 0D$	$chains \rightarrow dimens$	NaTiSi ₂ O ₆ [57, 58]
1D ightarrow 0D	$chains \rightarrow dimens$	TiOC1 [59]
$2D \to 0D$	triangular lattice \rightarrow trimers	LiVO ₂ [60, 61]
$2D \to 0D$	square lattice \rightarrow dimers	$La_4Ru_2O_{10}$ [62]
$2D \to 0D$	depleted square lattice \rightarrow tetramers	CaV_9O_9 [63, 64]
3D ightarrow 0D	hollandite \rightarrow tetramers	$K_2Cr_8O_{16}$ [65, 66]
3D ightarrow 0D	spinel \rightarrow tetramers/trimers	AlV_2O_4 [67, 68]
3D ightarrow 0D	spinel \rightarrow octamers	$CuIr_2S_4$ [69, 70]
$3D \rightarrow 1D$	spinel \rightarrow chains \rightarrow dimers	MgTi ₂ O ₄ [70, 71]
$3D \rightarrow 1D$	$perovskite \rightarrow chains$	KCuF ₃ [72]
$3D \rightarrow 1D$	pyrochlore \rightarrow chains	$Tl_2Ru_2O_7$ [73]

D. Khomskii, S.S. Chem. Rev. 121, 2992 (2021)

Take-home messages

- Orbitals can affect the crystal structure
- Orbitals can **define magnetic** properties
- There are plenty of **orbital-selective effects:** Mott transition, magnetic properties
- Orbitals may **reduce dimensionality** of a magnetic subsystem

