

Russian Science Foundation

Спин-орбитальное взаимодействие, как источник новых эффектов в магнитных системах

Sergey V. Streltsov

Institute of metal physics Ekaterinburg, Russia

Russian Academy of Sciences

Introduction: Spin-orbit coupling (SOC) in transition metal compounds

Spin-orbit coupling:
$$\hat{H}_{SOC} = \sum_{i} \zeta \hat{\vec{l}}_{i} \hat{\vec{s}}_{i} \rightarrow \lambda \hat{\vec{L}} \hat{\vec{S}}$$

SOC parameter $\zeta \sim \left(\frac{Ze^{2}}{\hbar c}\right)^{2} \frac{m_{e}e^{4}}{\hbar^{2}}$ is large for heavy elements;

SOC for a single electron:

TROPIC TOTALS ATTACK

d

$$\vec{j} = \vec{l} + \vec{s}$$
$$\hat{H}_{SOC} = \zeta \hat{\vec{l}} \hat{\vec{s}} = \zeta \left(\hat{j}^2 - \hat{l}^2 - \hat{s}^2 \right)/2$$

i = 5/2

j = 3/2

 Δ_{SOC}

Fixed s and l; j=l+s or j=l-s

Crystal field splitting (CFS)

Introduction: Various energy scales

SOC is large in heavy metals: Au, Ir, ..., but they have a larger principle number, *n*

Introduction: Various energy scales

• Typically all 4d and 5d metals are in the low spin state (we first fill t_{2g} states)

Typical parameters for transition metals

see e.g. Abragam and Bleaney "EPR of transition ions",

• Since $\Delta_{t_{2g}-e_g} \gg \lambda$ we can restrict ourselves to consideration of **SOC** for the t_{2g} states only

Introduction: Spin-orbit coupling (SOC) for t_{2g} - states

$$\hat{H}_{SOC} = \lambda \hat{\vec{l}} \hat{\vec{s}} = \lambda (\hat{l}_x \hat{s}_x + \hat{l}_y \hat{s}_y + \hat{l}_z \hat{s}_z)$$

Let's calculate this operator! We know how it works with Y_{l,m_l} and transformation rules:

$$\begin{split} \hat{l}_{z}Y_{l,m_{l}} &= m_{l}Y_{l,m_{l}} \\ \hat{l}_{z}Y_{l,m_{l}} &= m_{l}Y_{l,m_{l}} \\ \hat{l}^{-} &= \hat{l}^{x} - i\hat{l}^{y} \quad \hat{l}^{+} &= \hat{l}^{x} + i\hat{l}^{y} \\ \hat{l}^{\pm}Y_{l,m_{l}} &= \sqrt{(l \pm m_{l} + 1)(l \mp m_{l})}Y_{l,m_{l} \pm 1} \end{split} \qquad \begin{aligned} D_{x} &= \frac{1}{\sqrt{2}}(Y_{1,-1} - Y_{1,1}) \quad D_{xy} &= \frac{i}{\sqrt{2}}(Y_{2,1} - Y_{2,2}) \\ D_{y} &= \frac{i}{\sqrt{2}}(Y_{1,-1} + Y_{1,1}) \quad D_{yz} &= \frac{i}{\sqrt{2}}(Y_{2,1} + Y_{2,-1}) \\ D_{z} &= Y_{1,0} \qquad D_{xz} - \frac{1}{\sqrt{2}}(Y_{2,-1} - Y_{2,1}) \\ D_{3z^{2} - r^{2}} &= Y_{2,0} \\ D_{x^{2} - y^{2}} &= \frac{1}{\sqrt{2}}(Y_{2,2} + Y_{2,-2}) \end{aligned}$$

Finally one obtains

$$\begin{array}{ll} \hat{L}_{x}D_{xz} = -iD_{xy} & \hat{L}_{y}D_{xz} = iD_{x^{2}-y^{2}} - i\sqrt{3}D_{3z^{2}-r^{2}} & \hat{L}_{z}D_{xz} = iD_{yz} \\ \hat{L}_{x}D_{yz} = i\sqrt{3}D_{3z^{2}-r^{2}} + iD_{x^{2}-y^{2}} & \hat{L}_{y}D_{yz} = iD_{xy} & \hat{L}_{z}D_{yz} = -iD_{xz} \\ \hat{L}_{x}D_{xy} = iD_{xz} & \hat{L}_{y}D_{xy} = -iD_{yz} & \hat{L}_{z}D_{xy} = -2iD_{x^{2}-y^{2}} \\ \hat{L}_{x}D_{x^{2}-y^{2}} = -iD_{yz} & \hat{L}_{y}D_{x^{2}-y^{2}} = -iD_{xz} & \hat{L}_{z}D_{x^{2}-y^{2}} = 2iD_{xy} \\ \hat{L}_{x}D_{3z^{2}-r^{2}} = -i\sqrt{3}D_{yz} & \hat{L}_{y}D_{3z^{2}-r^{2}} = i\sqrt{3}D_{xz} & \hat{L}_{z}D_{3z^{2}-r^{2}} = 0 \end{array}$$

Spin operators are even simpler (just use s^+ and s^-)...

Introduction: Spin-orbit coupling (SOC) for t_{2g} - states

Introduction: Spin-orbit coupling and crystal-field splitting

4d-5d transition metal compounds

$$l_{eff} = -1 \quad j_{eff} = \{1/2, 3/2\}$$
 7

Electronic properties: Spin-orbit assisted Mott transition

Mott-Hubbard transition in a nutshell

Spin-orbit assisted Mott insulator

Spin-orbit assisted Mott state!

Other SO-assisted Mott insulators: α -RuCl₃, Ba₂NaOsO₆, Ca₂MnReO₆ etc. 10

Spin-orbit assisted Mott state: What exactly SOC does

1. SOC lifts orbital degeneracy / induces additional splitting

and thus stimulates metal-insulator transition

Compare with the crystal-field splitting (Δ):

Crystal-field splitting (Δ) helps metal-insulator transition!

Poteryaev et al., PRB 78, 045115 (2008) 1/4-filled two-band Hubbard model on square lattice

Spin-orbit assisted Mott state: What exactly SOC does

2. Coulomb correlations effectively increase SOC

Correlation effects make electrons more localized, atomic-like; this is good for SOC

Sr₂RhO₄:
$$\lambda = 0.13 eV$$

 $\lambda_{eff} = 2.15\lambda = 0.28 eV$

Variational Monte Carlo (VMC)

- Two-orbital model (*yz/zx*)
- Square lattice
- quater filling (n = 1)
 - *L* square width; $t_1 = dd\pi$

K. Kubo J. Phys. Soc. Jpn. 91, 124707 (2022)

 $\lambda(r) \sim -\frac{1}{r} \frac{\partial V}{\partial r}$ $\sum_{\substack{\text{region}\\ \text{region}\\ \text{regio$

G. Liu et al., PRL 101, 26408 (2008)

Spin-orbit assisted Mott state: Model results

L. Du et al., Eur. Phys. J. B. 86, 94 (2013)

R. Triebl et al., *PRB 98*, 205128 (2018)

Structural properties: Jahn-Teller effect and Spin-orbit coupling

Jahn-Teller effect in a nutshell

"Orbital-lattice" coupling

Jahn-Teller effect vs. Spin-orbit coupling general idea (on example of t_{2g}^1 configuration)

The Jahn-Teller effect and Spin-orbit coupling may compete! But... Hund's exchange also compete with spin-orbit coupling!

How to solve the Jahn-Teller problem in practice?

$$\hat{H} = \hat{H}_{SOC} + \hat{H}_{elast} + \hat{H}_{JT} + \hat{H}_{U}$$

Spin-orbit coupling

Interaction between electrons

Elastic term classical vibrations

Coupling to lattice static + classics

dynamic+quantum

$$\begin{split} \hat{H}_{SOC} &= -\zeta \sum_{i} \hat{\vec{l}}_{i} \hat{\vec{s}}_{i} \\ \hat{H}_{U} &= (U - 3J_{H}) \frac{\hat{N}(\hat{N} - 1)}{2} - 2J_{H} \hat{\mathbf{S}}^{2} - \frac{J_{H}}{2} \hat{\mathbf{L}}^{2} + \frac{5}{2} \hat{N} \\ \hat{H}_{elast} &= \frac{B}{2} \sum_{j} Q_{j}^{2} \qquad dynamic + quantum: \ \hat{H}_{elast} = \sum_{j} \hbar \omega_{j} (a_{j}^{\dagger} a_{j} + \frac{1}{2}) \\ \hat{H}_{JT}^{t \otimes E} &= -g \left(\hat{l}_{x}^{2} - \hat{l}_{y}^{2} \right) Q_{2} - g \left(\hat{l}_{z}^{2} - 2/3 \right) Q_{3} \\ \hat{H}_{JT}^{t \otimes E} &= -\frac{g}{\sqrt{2\hbar\omega}} \left(\hat{l}_{x}^{2} - \hat{l}_{y}^{2} \right) (a_{2} + a_{2}^{\dagger}) - \frac{g}{\sqrt{2\hbar\omega}} \left(\hat{l}_{z}^{2} - 2/3 \right) (a_{3} + a_{3}^{\dagger}) \end{split}$$

Technique: Exact diagonalization

The Jahn-Teller effect vs. SOC: d¹ suppression of JT distortions

- **Details:** Exact diagonalization, $T \otimes e$ problem (no dynamic effects)
- Examples: <u>Compression is tiny:</u> Cs₂TaCl₆, Rb₂TaCl₆ etc. <u>Seems undistorted:</u> Ba₂NaOsO₆, Ba₂MgReO₆ etc

18

The Jahn-Teller effect vs. SOC: d³ increase of JT distortions

JT effect (
$$\lambda = 0$$
)

No Jahn-Teller distortions

Jahn-Teller active!

Spin-orbit coupling induces Jahn-Teller distortions (compression)!

 Sr_2MgIrO_6

Ba₈Al₂IrO₁₄

Sr₂CaIrO₆

Botany of the Jahn-Teller effect

Magnetic properties: Higher order multipoles

Spin-orbit coupling and d^1 **configuration**

Weak SOC

Orbital moment is quenched, $S = 1/2 \implies M = 2S = 1\mu_B$ Example: YTiO₃ ($M = 0.84\mu_B$) t_{2g}

Strong SOC (wrt non-cubic field)

$$p - t_{2g}$$
 equivalence: $p \rightarrow t_{2g}, l \rightarrow -l_{eff}$
 $t_{2g} = j_{eff} = 1/2$ Mag. mom: $M = 2S - l_{eff}$
 $S = 1/2, l_{eff} = 1 \Longrightarrow M = 0$
No local magnetic moment!

Any examples (materials)?

Strong spin-orbit coupling and d^1

PRB 89, 020402 (2014)

Jackeli and Khaliullin PRL 103, 067205 (2009)

Eremin et al., PRB 84, 212407 (2011)

Neutrons: did NOT find magnetic	JSSC 85, 321
contributions for $T < T_N$	(1990)

 μ^+SR : some AFM for T < 8K PRB 92, 064408 (2015)

 λ for *3d* ions is typically small...

What is going on at 100K? What is being ordered if magnetic moment is zero?

3-band Hubbard model with 1 electron on the square lattice (= Sr_2VO_4)

P. Igoshev, V. Irkhin, S.S. arXiv:2406.07386

xz/yz

Strong spin-orbit coupling and d^2

Magnetic properties: Kitaev model and Kitaev materials

Kitaev interaction: all new is well-forgotten old

(simplified) Heisenberg model:

$$\hat{H} = \sum_{i>i} J_{ij} \hat{\vec{S}}_i \hat{\vec{S}}_j$$

Heisenberg model:

$$\longrightarrow \hat{H} = \sum_{i>j} \hat{\vec{S}}_i \begin{pmatrix} J^{xx} & J^{xy} & J^{xz} \\ J^{yx} & J^{yy} & J^{yz} \\ J^{zx} & J^{zy} & J^{zz} \end{pmatrix}_{ij} \hat{\vec{S}}_j$$

Spin-orbit coupling

- Symmetric anisotropic exchange
- Dzyaloshinskii-Morya
- Single-ion anisotropy

Ising model, Kitaev model ...

Alexei Kitaev = Алексей Китаев

$j_{eff} = 1/2 +$ Common edge + ligand hopping = Kitaev exchange

G. Jackeli, G. Khaliullin, PRL 102, 17205 (2009)

- Let 1) Configuration t_{2g}^5
 - 2) SOC is strong
 - 3) Common edge geometry
 - 4) Ligand-assisted hoppings <u>only</u>

Superexchange:

$$H = \sum_{i>j} J_{ij} \hat{\vec{S}}_i \hat{\vec{S}}_j$$

$$y_z$$

 y_z
 x_z
 y_z
 y_z
 y_z
 y_z

$$|j_{1/2}^{z}\rangle = -\frac{1}{\sqrt{3}} \left(|xy\uparrow\rangle + i|xz\downarrow\rangle + |yz\downarrow\rangle \right)$$
$$|j_{-1/2}^{z}\rangle = \frac{1}{\sqrt{3}} \left(|xy\downarrow\rangle + i|xz\uparrow\rangle - |yz\uparrow\rangle \right)$$

but
$$\langle j_{1/2,a}^{z} | \hat{t} | j_{-1/2,b}^{z} \rangle = \langle j_{-1/2,a}^{z} | \hat{t} | j_{1/2,b}^{z} \rangle = 0$$

 $\langle j_{1/2,a}^{z} | \hat{t} | j_{1/2,b}^{z} \rangle = \frac{1}{3} (i \langle yz \downarrow_{a} | \hat{t} | xz \downarrow_{b} \rangle - i \langle xz \downarrow_{a} | \hat{t} | yz \downarrow_{b} \rangle = (it - it) = 0$

NO conventional AFM superexchange!

 $J \sim \frac{t^2}{U}$

$j_{eff} = 1/2 +$ Common edge + ligand hopping = Kitaev exchange

G. Jackeli, G. Khaliullin, PRL 102, 17205 (2009)

- Let 1) Configuration t_{2g}^5
 - 2) SOC is strong
 - 3) Common edge geometry
 - 4) Ligand-assisted hoppings <u>only</u>

Analogue of

Exchange between half-filled/empty orbitals

$$K \sim -\frac{\tilde{t}_{dd}^2 J_H}{U^2} < 0$$

$$\hat{H}_{ij} = KJ_i^z J_j^z \to JS_i^z S_j^z$$

 $z \perp$ basal plane

Bond-depended anisotropic exchange

Possible candidates for Kitaev physics (1st generation)

- 1) Configuration t_{2g}^5
- 2) Common edge geometry
- 3) Ligand-assisted hoppings
- 4) SOC is strong

G. Jackeli, G. Khaliullin, PRL 102, 17205 (2009)

Na₂IrO₃

Kitaev model
$$\hat{H} = -\sum_{\langle ij \rangle_{\gamma}} K_{\gamma} \hat{S}_{i}^{\gamma} \hat{S}_{j}^{\gamma}$$

Kitaev Ann. Phys. 321, 2 (2006)

- Exactly solvable
- Highly frustrated model
- Quantum spin-liquid (based on Ising model)
- Fractionalized excitations (Majoranas)

Kitaev materials (1st generation): Na₂IrO₃

Li₂RhO₃

 α -Li₂IrO₃

30

 α -RuCl₃

Kitaev model: classical variant

$$H = -K_x \sum_{x \text{ bonds}} S_i^x S_j^x - K_y \sum_{y \text{ bonds}} S_j^x S_j^x - K_y \sum_{y \text{ bonds}} S_y^x S_j^x -$$

$$\sum_{y \text{ bonds}} S_i^y S_j^y - K_z \sum_{z \text{ bonds}} S_i^z S_j^z = -\sum_{\langle ij \rangle_{\gamma}} K_{\gamma} S_i^{\gamma} S_j^{\gamma}$$

$$\gamma = \{x, y, z\}$$

Features of classical Kitaev model

- Spins are strongly frustrated
- Spins can't order even at T = 0

1982 г. Апрель

Том 136, вып. 4

УСПЕХИ ФИЗИЧЕСКИХ НАУК

Эффект яна-теллера и магнетизм: соединения ПЕРЕХОДНЫХ МЕТАЛЛОВ

 $\langle ij \rangle_{\gamma}$

К. И. Кугель, Д. И. Хомский

$$H = J\left(\sum_{\langle i, j \rangle_{x}} \tau_{i}^{x} \tau_{j}^{x} + \sum_{\langle i, j \rangle_{x}} \tau_{i}^{y} \tau_{j}^{y} + \sum_{\langle i, j \rangle_{z}} \tau_{i}^{z} \tau_{j}^{z}\right),$$
(34)

где символ $(i, j)_{x, y, z}$ обозначает пары i, j, расположенные по осям x, y31

Majorana fermions

(Dirac) fermions: a and a^{\dagger}

Majorana fermions (majoranas)

(3) $c_i c_i = -c_i c_i$ if $j \neq i$

Majoranas:

Spins can be expressed be expressed via two (conventional) fermions: a, a^{\dagger}

(2) $c^2 = 1$

 $\hat{\vec{S}}_{i} = \frac{1}{2} \sum_{\sigma\sigma'} a_{i\sigma}^{\dagger} \vec{\sigma}_{\sigma\sigma'} a_{i\sigma'}, \quad \sigma, \sigma' = \uparrow, \downarrow$

Spin operators can be expressed* via four majoranas: b^x, b^y, b^z, c

*commutation relations for Pauli matrixes are conserved, if additional constraint $b^x b^y b^z c = 1$ is applied 32

Kitaev model: quantum case

 $\hat{H} = -\sum_{\langle ij \rangle_{\gamma}} K_{\gamma} \hat{S}_{i}^{\gamma} \hat{S}_{j}^{\gamma} = \frac{1}{4} \sum_{\langle ij \rangle_{\nu}} K_{\gamma} b_{i}^{\gamma} b_{j}^{\gamma} c_{i} c_{j} = \frac{1}{4} \sum_{\langle ij \rangle_{\nu}} K_{\gamma} u_{ij}^{\gamma} c_{i} c_{j},$

Kitaev model via majoranas

Quadratic form! Readily diagonizable if u_{ii}^{γ} were numbers. Non-interacting c majoranas?

$$u_{ij}^{\gamma}u_{ij}^{\gamma} = b_i^{\gamma}b_j^{\gamma}b_i^{\gamma}b_j^{\gamma} = -1 \Rightarrow u_{ij}^{\gamma} = \pm i$$

Flux: $W_p = u_{12}u_{23}u_{34}u_{45}u_{56}u_{61} = \pm 1$

One can show numerically or analytically that the ground state corresponds to $W_p = +1$ on all hexagons

Possible candidates for Kitaev physics (1st generation)

Kitaev-Heisenberg model

$$\mathcal{H}_{ij} = J_{ij} \, \mathbf{S}_i \cdot \mathbf{S}_j + K_{ij} \, S_i^{\gamma} S_j^{\gamma} + \Gamma_{ij} \left(S_i^{\alpha} S_j^{\beta} + S_i^{\beta} S_j^{\alpha} + \Gamma_{ij}^{\prime} \left(S_i^{\gamma} S_j^{\alpha} + S_i^{\gamma} S_j^{\beta} + S_i^{\alpha} S_j^{\gamma} + S_i^{\beta} S_j^{\gamma} \right)$$

What about J_3 ? \checkmark

Experimental results

Property	Na ₂ IrO ₃	α -Li ₂ IrO ₃	${\rm Li}_2{\rm RhO}_3$	α -RuCl ₃
$\mu_{\mathrm{eff}} \left(\mu_B ight)$	1.79	1.83	2.03	2.0 to 2.7
Θ_{iso} (K)	~ -120	-33 to -100	~ -50	$\sim +40$
Θ_{ab} (K)	-176	$\Theta_{ab} > \Theta_c$	—	+38 to +68
Θ_c (K)	-40	—	—	-100 to -150
T_N (K)	13 - 18	~ 15	(6)	7 to 14
Order	Zigzag	Spiral	Glassy	Zigzag
k -vector	$(0, 1, \frac{1}{2})$	(0.32, 0, 0)	—	$(0,1,rac{1}{2})$

Possible candidates for Kitaev physics (1st generation)

Kitaev-Heisenberg model

$$\mathcal{H}_{ij} = J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j + K_{ij} S_i^{\gamma} S_j^{\gamma} + \Gamma_{ij} \left(S_i^{\alpha} S_j^{\beta} + S_i^{\beta} S_j^{\alpha} \right)$$
$$+ \Gamma_{ij}' \left(S_i^{\gamma} S_j^{\alpha} + S_i^{\gamma} S_j^{\beta} + S_i^{\alpha} S_j^{\gamma} + S_i^{\beta} S_j^{\gamma} \right)$$

$$H_{ij} = \vec{S}_i \begin{pmatrix} X & Y & Z \\ J & \Gamma & \Gamma' \\ \Gamma & J & \Gamma' \\ \Gamma' & \Gamma' & J + K \end{pmatrix}_{ij} \vec{S}_j$$

 α -RuCl₃ $T_N = 7K$

Method	Structure	J_1	K_1	Γ_1	J_3
Exp. An. ¹⁶¹	_	-4.6	+7.0	—	_
Pert. Theo. ¹⁴⁶	$P3_{1}12$	-3.5	+4.6	+6.4	_
$QC (2-site)^{39}$	$P3_{1}12$	-1.2	-0.5	+1.0	_
ED $(6-site)^{43}$	$P3_{1}12$	-5.5	+7.6	+8.4	+2.3
Pert. Theo. ¹⁴⁶	Relaxed	-2.8/-0.7	-9.1/-3.0	+3.7/+7.3	_
ED $(6-site)^{43}$	C2/m	-1.7	-6.7	+6.6	+2.7
QC $(2-site)^{39}$	C2/m	+0.7	-5.1	+1.2	_
DFT^{175}	C2/m	-1.8	-10.6	+3.8	+1.3
Exp. An. ¹⁷⁶	_	-0.5	-5.0	+2.5	+0.5

Why is Heisenberg J_1 (isotropic exchange with nearest neighbors) so large?

Field-induced phenomena in α -RuCl₃

AFM is destroyed by in-plane magnetic field

J. Zheng et al., PRL 119, 227208 (2017)

S.-H. Baek et al., PRL 119, 37201 (2017)

A. Banerjee et al., NPJ Quantum Mater. 3, 8 (2018)

Two possible scenarios: highly debated; no final answer yet

2nd generation of Kitaev material defeat of h

NO <u>magnetic</u> order due to H zero-point motion (dynamic disorder)

Y. Li et al., PRL 121, 247202 (2018)

PRL 123, 237203 (2019), PRB 103, 094427 (2021), JACS 139, 15371 (2017)

9

What about other geometries? or anisotropic exchange on FCC lattice

What about other geometries? or anisotropic exchange on FCC lattice

Other materials with Kitaev-like interactions: Ba₃IrTi₂O₉ (triangular), Na₄Ir₃O₈ (hyperkagome)

Kitaev materials, 3rd generation: Cobaltites ???

Kitaev materials, 3rd generation: **Cobaltites** ???

Strong anisotropy of exchange interaction or $j_{eff}=1/2$ physics is important not only for $t_{2\rho}^5$ configuration (i.e. Ru³⁺, Ir⁴⁺ ions) and honeycomb geometry

S_m (J/mol.K)

Spin liquid in BaCo₂(AsO₄)₂?

BaCo₂(AsO₄)₂ is not Kitaev material (but still extremely interesting)

24.6 K

0.2 K

-6.0 K

-2.3 K

 J_3

 K_3

 Γ_3

 Γ'_3

Exchange
tensor

 $\begin{pmatrix} J & \Gamma & \Gamma' \\ \Gamma & J & \Gamma' \\ \Gamma' & \Gamma' & J + K \end{pmatrix}_{ii}$

DFT+U+SOC (*U*=6 *eV*)

 J_1

 K_1

 Γ_1

 Γ_1'

-40.9 K

 $2.2 \mathrm{K}$

-1.7 K

4.0 K

Why there is no a spin liquid

1. Isotropic exchange (J_1) much larger than Kitaev (K_1)

2. 3rd nn exchange (J_3) is very efficient

P. Maksimov et al, PRB 106, 165131 (2022)

Co-based pyroxenes ABCo₂O₆: novel (1D?) materials with strong Kitaev

Table 1. Comparison of the exchanges from ab initio (GGA+U+SOC) calculations and neutron scattering fit (LSWT).

Method	J	K	K/J	Γ	Γ'	J_1	J_2
GGA+U+SOC	-1.20	1.12	0.93	-	-	0.74	1.06
LSWT	-0.87	0.83	0.96	0.43	-0.26	0.40	0.60

The exchanges are in units of meV.

Kitaev is large, K/|J| = 0.96!The system is not 1D!

What about ACoSi₂O₆?

Maksimov et al., arXiv:2401.13550

Take-home messages

- Mott-Hubbard transition is affected by spin-orbit coupling (U_c is typically decreased)
- Spin-orbit coupling strongly affects the Jahn-Teller effect (result depends on elec. number)
- There can hidden (magnetic) orders in spin-orbit materials
 - Kitaev materials: <u>Iridates/ruthenates</u>: Kitaev can be large; Field-dependence? <u>Cobaltites</u> no solid evidence for Kitaev physics yet

D. Khomskii, S. Streltsov Chem. Rev. **121**, 2992 (2021) T. Takayama et al., JPSJ **90**, 062001 (2021)

