ФОТОГАЛЬВАНИЧЕСКИЕ ЭФФЕКТЫ В НИЗКОРАЗМЕРНЫХ СИСТЕМАХ – 2 ГЕОМЕТРИЧЕСКИЕ ЭФФЕКТЫ

С.А. Тарасенко

ФТИ им. А.Ф. Иоффе, Санкт-Петербург

Летняя школа фонда Базис - 2024 «Современные проблемы физики конденсированного состояния»

PHOTOCURRENTS IN 2D SYSTEMS

Excitation by plane wave $E(t) = E \exp(-i\omega t) + c.c.$ \uparrow (complex) amplitude Photocurrents $j \propto EE^*, i.e., \propto I$ \uparrow radiation intensity

Mechanisms of dc current (photocurrent) induced by homogeneous radiation

- Macroscopic inhomogeneity (*p*-*n* junction, asymmetry of contacts, ratchets)
- Lack of space inversion symmetry at microscopic level (photogalvanic effects)
- Photon drag (light pressure)

ПЛАН ЛЕКЦИИ

- Краевые фотогальванические эффекты в 2D материалах
 - микроскопические механизмы, кинетическая теория эксперимент на графене
 - генерация второй гармоники
- Фототоки, индуцированные структурированным светом
- Основные результаты

EDGE CURRENTS IN TWO-DIMENSIONAL SYSTEMS

Symmetry is naturally broken at edges ⇒ Second-order effects get allowed

First study of edge photogalvanic effect in 2D systems (graphene) J. Karch et al., Phys. Rev. Lett. **107**, 276601 (2011)

Surface photogalvanic effects in bulk materials and films

L.I. Magarill, M.V. Entin, Phys. Solid State (1979), JETP (1981)

V.L. Alperovich, A. Minaev, A.S. Terekhov, JETP Lett. (1979)

V.L. Alperovich, V.I& Belinicher, V.N. Novikov, A.S. Terekhov, JETP (1981)

V.L. Gurevich, R. Laiho, Phys. Rev. B (1993)

C.B. Schmidt, S. Priyadarshi, S.A.T., M. Bieler, Phys. Rev. B (2015)

G.M. Mikheev, A.S. Saushin, V.M. Styapshin, Y.P. Svirko, Sci. Rep. (2018)

Edge plasmons

D.B. Mast, A.J. Dahm, and A.L. Fetter, Phys. Rev. Lett. (1985) V.A. Volkov, S.A. Mikhailov, JETP Lett. (1985), JETP (1988) I.V. Kukushkin, M.Yu. Akimov, J.H. Smet, S.A. Mikhailov, K. von Klitzing, I.L. Aleiner, V.I. Falko, PRL (2004) V.M. Muravev, P.A. Gusikhin, A.M. Zarezin, I.V. Andreev, S.I. Gubarev, and I.V. Kukushkin, PRB (2019) A.A. Zabolotnykh, V.A. Volkov, Phys. Rev. B (2019)

Review on edge photogalvanic effects in topological insulators

M.V. Durnev and S.A.T., Ann. Phys. 531, 1800418 (2019)

EDGE CURRENTS EXCITED BY LINEARLY AND CIRCULARLY POLARIZED RADIATION

E(1 X

 J_{v}

 J_{1}

Linearly polarized radiation $J_y \propto (E_x E_y^* + E_y E_x^*)$ $\propto \sin 2\varphi$

Circularly polarized radiation

 $J_y \propto i(E_x E_y^* - E_y E_x^*)$ $\propto P_{\text{circ}}$

QUASI-CLASSICAL APPROACH

Kinetic equation for distribution function

$$\frac{\partial f}{\partial t} + v_x \frac{\partial f}{\partial x} + e \mathcal{E}(x, t) \cdot \frac{\partial f}{\partial p} = I\{f\}$$

Electric field (external field + screening)

$$\mathcal{E}_{\omega,x}(x) = E_{\omega,x} + \frac{2}{\epsilon} \int_{0}^{\infty} \frac{\rho_{\omega}(x')dx'}{x - x'}, \quad \mathcal{E}_{\omega,y} = E_{\omega,y}$$

mean free path

Polarization dependence

 $J_y \propto E_x E_y \propto \sin 2\varphi$

+ Boundary condition at x = 0

diffusive scattering

specular reflection

SOLUTION OF THE KINETIC EQUATION

Expansion in the Fourier series

The density of dc electric current and the total dc current

$$j_{y}(x) = ev \sum_{p} v_{y} f_{2}(x, p) \qquad J_{y} = \int_{0}^{\infty} j_{y}(x) dx$$

the spin and valley degeneracy

The edge current

$$I_{y} = -ev\tau \sum_{p} v_{x}v_{y}[f_{2}(\boldsymbol{p},\infty) - f_{2}(\boldsymbol{p},0)] + i\frac{e^{2}v\tau}{\omega m^{*}}\sum_{p} v_{x}[E_{y}f_{1}^{*}(\boldsymbol{p},\infty) - c.c.]$$

S. Candussio, M.V. Durnev, J. Yin, J. Keil, Y. Yang, S.-K. Son, A. Mishchenko, H. Plank, V.V. Bel'kov, S. Slizovskiy, S.A.T., V. Fal'ko, and S.D. Ganichev, PRB **102**, 045406 (2020) M.V. Durnev and S.A.T., Phys. Status Solidi B **258**, 2000291 (2021)

CONTRIBUTIONS TO EDGE CURRENT

$$J_{y} = -e\nu\tau \sum_{p} v_{x}v_{y}[f_{2}(\boldsymbol{p},\infty) - f_{2}(\boldsymbol{p},0)] + i\frac{e^{2}\nu\tau}{\omega m^{*}}\sum_{p} v_{x}[E_{y}f_{1}^{*}(\boldsymbol{p},\infty) - c.c.]$$

 p_y'

E

 p_{χ}

Alignment of electron momenta by linearly polarized radiation

Anisotropic part of the distribution function

$$f_2(\boldsymbol{p},\infty) \propto \sum_{\alpha,\beta} \left(p_{\alpha} p_{\beta} - \frac{p^2}{2} \right) E_{\alpha} E_{\beta}$$

2nd angular harmonic in *p*-space

mean free path

CONTRIBUTIONS TO EDGE CURRENT

$$J_{y} = -e\nu\tau \sum_{p} v_{x}v_{y}[f_{2}(\boldsymbol{p},\infty) - f_{2}(\boldsymbol{p},0)] + i\frac{e^{2}\nu\tau}{\omega m^{*}}\sum_{p} v_{x}[E_{y}f_{1}^{*}(\boldsymbol{p},\infty) - c.c.]$$

Dynamic accumulation of carriers at the edge

LINEAR VS PARABOLIC ENERGY SPECTRA

Edge currents in 2D systems with linear (graphene) and parabolic (bilayer) spectra

Graphene with the carrier density n = $5*10^{11}$ cm⁻², relaxation time τ_1 = 1 ps, and the intensity I = 1 W/cm²

 $\varepsilon = p^2/2m$ 5 Edge photocurrent, J_y (nA) bilayer 0 short-range 🖍 -5 short-range (Coulomb 🖊 -10 Coulomb () -153 0 4 5 Frequency, $\omega \tau_1$

Bilayer with the carrier density n = $5*10^{11}$ cm⁻², relaxation time τ_1 = 1 ps, and the intensity I = 1 W/cm²

Edge current (specular reflection from the edge)

$$J_{y} = \frac{e \operatorname{Re} \sigma(\omega)}{m} \left\{ \tau_{1}(\tau_{1} - 2\tau_{2}) + \frac{m^{2}v^{2}}{2} \left[\frac{\tau_{1}}{2} \left(\frac{\tau_{1}}{m} \right)' - m \left(\frac{\tau_{1}\tau_{2}}{m^{2}} \right)' \right] + \frac{m^{2}v^{2}(\tau_{1} + \tau_{2})}{4[1 + (\omega\tau_{2})^{2}]} \left(\frac{\tau_{1}}{m} \right)' \right\} S_{2}$$
$$- \frac{e \operatorname{Re} \sigma(\omega)}{m\omega} \left[\tau_{1} + \frac{m^{2}v^{2}[2 + \omega^{2}\tau_{2}(\tau_{2} - \tau_{1})]}{4[1 + (\omega\tau_{2})^{2}]} \left(\frac{\tau_{1}}{m} \right)' \right] S_{3}.$$

M.V. Durnev and S.A.T., Appl. Sci. 13, 4080 (2023)

SAMPLES: GRAPHENE MONOLAYERS AND BILAYERS

Sketch of samples

- exfoliated mono and bilayers/ h-BN
- epitaxial graphene on SiC
- contacts, Hall bar structure
- back gate to tune the Fermi level

Samples: Regensburg, Goteborg, Manchester

Transport data. Dependence on gate voltage in graphene bilayer

EXPERIMENTAL TECHNIQUE

Photoresponse vs laser spot position

Experimental geometry

pulsed molecular THz laser *f* = 0.6, 0.8, 1.1, 2.0, and 3.3 THz

Experiment: Regensburg

large-scale epitaxial graphene

PHOTOVOLTAGE IN SQUARE-SHAPE BILAYER SAMPLE

Electrostatic potential distribution $\operatorname{div} (j_{\text{photo}} + j_{\text{drift}}) = 0$ $j_{\text{drift}} = \sigma E = -\sigma \operatorname{grad} \Phi$

$$J_y = -\frac{2e^3\tau^3 n_e E_x E_y}{m^{*2}[1+\omega^2\tau^2]} \propto \sin 2\alpha$$

S. Candussio, M.V. Durnev, J. Yin, J. Keil, Y. Yang, S.-K. Son, A. Mishchenko, H. Plank, V.V. Bel'kov, S. Slizovskiy, S.A.T., V. Fal'ko, and S.D. Ganichev, PRB **102**, 045406 (2020)

EFFECT OF MAGNETIC FIELD

Rotation of momentum alignment

 $p_{\mathcal{V}}$

Dependence of the edge current on magnetic field

Edge photocurrent in classical magnetic field

 p_{χ}

EDGE PHOTOCURRENT AT INTER-BAND TRANSITIONS

Strong absorption and optical alignment of electron momenta at inter-band transitions in 2D Dirac materials

Optical alignment in bulk zinc-blende crystals and quantum wells: D.N. Mirlin, in *Optical orientation* (North-Holland, 1984) V.I. Zemskii, B.P. Zakharchenya, D.N. Mirlin, JETP Lett. (1976) V.D. Dymnikov, M.I. D'yakonov, and V.I. Perel, JETP (1976) N.A. Merkulov, V.I. Perel, and M.E. Portnoi, JETP (1991)

Optical alignment in graphene:

R.R. Hartmann and M.E. Portnoi, (LAP Lambert Academic, Chisinau, 2011) L.E. Golub, S.A.T., M.V. Entin, L.I. Magarill, Phys. Rev. B 84, 195408 (2011)

EDGE PHOTOCURRENT AT INTER-BAND TRANSITIONS

Edge photocurrents of electrons and holes

electron-hole asymmetry is required for the electric current to emerge

Structure with many narrow strips

projection to 1 μ A per W/cm² in 3×3 mm² sample

Excitation spectrum of edge photocurrent

at radiation intensity 1 W/cm² and momentum relaxation time 1 ps

M.V. Durnev and S.A.T., Phys Rev. B 103, 165411 (2021)

ПЛАН ЛЕКЦИИ

- Краевые фотогальванические эффекты в 2D материалах
 - микроскопические механизмы, кинетическая теория эксперимент на графене
 - генерация второй гармоники
- Фототоки, индуцированные структурированным светом
- Основные результаты

SECOND HARMONIC GENERATION

AC electric field $E_{\omega} \exp(-i\omega t) + c.c.$

 $J_{2\omega, y} \propto E_x E_y$ *p*-polarized emission

 $J_{2\omega, x} \propto E_x^2$ s-polarized emission

MICROSCOPIC THEORY OF EDGE SHG

Boltzmann equation for distribution function

$$\frac{\partial f}{\partial t} + v_x \frac{\partial f}{\partial x} + e \mathcal{E}(x, t) \cdot \frac{\partial f}{\partial p} = I\{f\}$$

+ collision integral+ boundary conditions

Electric field (external field + screening) at ω and 2ω

$$\mathcal{E}_{\omega,x}(x) = E_{\omega,x} + \frac{2}{\epsilon} \int_{0}^{\infty} \frac{\rho_{\omega}(x')dx'}{x-x'}, \quad \mathcal{E}_{2\omega,x}(x) = \frac{2}{\epsilon} \int_{0}^{\infty} \frac{\rho_{2\omega}(x')dx'}{x-x'}$$

Expansion in the Fourier series

$$f(\mathbf{p}, x, t) = f_0 + [f_1(\mathbf{p}, x)e^{-i\omega t} + c. c.] + [f_2(\mathbf{p}, x)e^{-2i\omega t} + c. c.] + \dots$$

Currents at double frequency along and normal to edge

$$j_{2\omega,\parallel} = \frac{-e\nu\tau_1}{1-2i\omega\tau_1} \left[\sum_{p} v_x v_y \frac{\partial f_2}{\partial x} - \frac{eE_{\omega,y}}{m} \sum_{p} f_1 \right]$$
$$j_{2\omega,\perp} = \frac{-e\nu\tau_1}{1-2i\omega\tau_1} \left[\sum_{p} v_x^2 \frac{\partial f_2}{\partial x} - \frac{e\mathcal{E}_{\omega,x}}{m} \sum_{p} f_1 \right] + \frac{ne^2\tau_1}{1-2i\omega\tau_1} \mathcal{E}_{2\omega,x}$$

2ω current along the edge

 \mathbf{I} (1) 5 E_{α} $\pi/2$ (a) arg $(J_{2\omega, y})$ Edge current $J_{2\omega, y}/J_0$ k_{2u} 4 0 $E_{2\omega} \| y$ E_{2} 3 $-\pi/2$ 0 2 Frequency $(\omega \tau_1)$ $oldsymbol{J}_{2\omega,y}$ $\tau_2 = 0$ 1 $\tau_2 = \tau_1$ 0 0.5 1.5 2.0 1.0 0 Frequency ($\omega \tau_1$)

Frequency dependence of the current at 2ω

Current along the edge

$$J_{2\omega,\parallel} = -i \frac{ne^3 \tau_1 (1 - 4i\omega\tau_2)}{m^{*2} \omega (1 - i\omega\tau_1)(1 - 2i\omega\tau_1)(1 - 2i\omega\tau_2)} E_{\omega,x} E_{\omega,y}$$

 au_1, au_2 are the relaxation times of first and second angular harmonics

- The total current weakly depends on screening (while the current profile does depend)

M.V. Durnev and S.A.T., Phys Rev. B 106, 125426 (2022)

2ω CURRENT PERPENDICULAR TO THE EDGE

Frequency dependence of the current and current profile

Numerical calculations for 2D system with parabolic spectrum: — strong screening (local response approximation)

- - - no screening

M.V. Durnev and S.A.T., Phys Rev. B 106, 125426 (2022)

ПЛАН ЛЕКЦИИ

- Краевые фотогальванические эффекты в 2D материалах
 - микроскопические механизмы, кинетическая теория эксперимент на графене
 - генерация второй гармоники
- Фототоки, индуцированные структурированным светом
- Основные результаты

STRUCTURED RADIATION

From intensity or polarization gratings to beams carrying orbital angular momentum (twisted radiation) and fields with fully controlled spatiotemporal structure

OPTICAL BEAMS

Superposition of plane waves

$$E(\mathbf{r},t) = \sum_{\mathbf{q}} E_{\mathbf{q}} \exp(i\mathbf{q} \cdot \mathbf{r} - i\omega t) + c.c.$$
$$|\mathbf{q}| = \omega/c$$

Paraxial approximation $|q_x|, |q_y| \ll q_z$

Examples are Gaussian, Hermite-Gaussian, or Laguerre-Gaussian beams

Bessel beams

VECTOR BEAMS

Bessel beams

(a) Radial beam

(c) Azimuthal beam

Distribution of electric field *E* in the beam cross-section

Electric field

$$\boldsymbol{E}(\boldsymbol{\rho}, z) = \sum_{\boldsymbol{q}_{\parallel}} \boldsymbol{E}_{\boldsymbol{q}_{\parallel}} \exp(iq_{z}z + i\boldsymbol{q}_{\parallel} \cdot \boldsymbol{\rho})$$

TWISTED LIGHT

K.A. Forbes, D.L. Andrews, J. Phys. Photonics **3**, 022007 (2021)

Reviews: A. Forbes, M. de Oliveira, and M. R. Dennis, Structured light, Nat. Photonics **15**, 253 (2021) B.A. Knyazev and V.G. Serbo, Phys. Usp. **61**, 449 (2018)

THz range: X. Wei, C. Liu, L. Niu et al., Appl. Opt. **54**, 10641 (2015) Y.Y. Choporova, B.A. Knyazev, G.N. Kulipanov et al., Phys. Rev. A **96**, 023846 (2017)

PHOTORESPONSE TO STRUCTURED RADIATION

Observation: Photoresponse sensitive to photon orbital angular momentum (OAM)

Z. Ji, W. Liu, S. Krylyuk et al., Science 368, 763 (2020)

Open questions: Microscopic mechanisms, Theory

Photoresponse: Z. Ji, W. Liu, S. Krylyuk et al., Science 368, 763 (2020) S. Sederberg, F. Kong, F. Hufnagel et al., Nat. Photon. 14, 680 (2020)

PHOTOCURRENTS BY STRUCTURED THZ RADIATION

Electric field of incident radiation in the 2D electron gas plane

$$\boldsymbol{E}(\boldsymbol{r},t) = \boldsymbol{E}(\boldsymbol{r}) \exp(-i\omega t) + \text{c. c.}$$

(complex) amplitude varying in 2D plane

Emergent dc photocurrent j(r) due to ac field structure

$$j_{\alpha}(\boldsymbol{r}) \propto \frac{\partial}{\partial r_{\beta}} E_{\gamma} E_{\delta}^*$$

QUASI-CLASSICAL APPROACH

Boltzmann equation for electron distribution function $f(\mathbf{p}, \mathbf{r}, t)$

$$\frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \frac{\partial f}{\partial \boldsymbol{r}} + e\left[\boldsymbol{E}_{\parallel}(\boldsymbol{r},t) + \frac{1}{c} \boldsymbol{v} \times \boldsymbol{B}_{z}(\boldsymbol{r},t)\right] \cdot \frac{\partial f}{\partial \boldsymbol{p}} = \mathbf{I}\left\{f\right\}$$

Electric E(r, t) and magnetic B(r, t) fields of radiation

Collision integral (relaxation time approximation)

$$\mathbf{I}\left\{f\right\} = \frac{f - \langle f \rangle}{\tau} + \mathbf{I}_{e-e}\left\{f\right\} + \mathbf{I}_{\varepsilon}\left\{f\right\}$$

Solution to second order in the electric field, i.e., the radiation intensity

Assumptions: length of field variation $L(\sim \lambda) \gg l$ mean free path, spatial dispersion of screening is negligible at $L \gg (2\pi\sigma/c)$

SOLUTION OF THE KINETIC EQUATION

Expansion in the field amplitude

$$f(\boldsymbol{p}, \boldsymbol{r}, t) = f_0(\boldsymbol{p}) + [f_1(\boldsymbol{p}, \boldsymbol{r})e^{-i\omega t} + c. c.] + f_2(\boldsymbol{p}, \boldsymbol{r})$$
$$f_1 \propto E \qquad \qquad f_2 \propto EE^*, EB^*$$

Set of differential equations

$$-i\omega f_{1} + \boldsymbol{v} \cdot \frac{\partial f_{1}}{\partial \boldsymbol{r}} + e\boldsymbol{E}_{\parallel}(\boldsymbol{r},t) \cdot \frac{\partial f_{0}}{\partial \boldsymbol{p}} = I\{f_{1}\}$$
$$\boldsymbol{v} \cdot \frac{\partial f_{2}}{\partial \boldsymbol{r}} + e\left\{\left[\boldsymbol{E}_{\parallel}(\boldsymbol{r},t) + \frac{1}{c} \boldsymbol{v} \times \boldsymbol{B}_{z}(\boldsymbol{r},t)\right] \cdot \frac{\partial f_{1}^{*}}{\partial \boldsymbol{p}} + \text{c.c.}\right\} = I\{f_{2}\}$$

The density of dc electric current

$$\boldsymbol{j}(\boldsymbol{r}) = e \nu \sum_{\boldsymbol{p}} \boldsymbol{\nu} f_2(\boldsymbol{p}, \boldsymbol{r})$$

 ν is the spin and/or valley degeneracy

CONTRIBUTIONS TO PHOTOCURRENT

Photocurrent density $j = j^{(\text{th})} + j^{(\text{pol})} + j^{(\text{ph})}$

(i) Photothermoelectric current

$$\boldsymbol{j}^{(\mathrm{th})} = -2 \frac{e\tau \,\tau_{\varepsilon} \operatorname{Re} \sigma}{m^*} \boldsymbol{\nabla} S_0$$

(ii) Currents by polarization gradients

$$j_x^{(\text{pol})} = -\frac{e\tau^2 \operatorname{Re}\sigma}{m^*} \left(\frac{\partial S_1}{\partial x} + \frac{\partial S_2}{\partial y} - \frac{1}{\omega\tau}\frac{\partial S_3}{\partial y}\right)$$
$$j_y^{(\text{pol})} = -\frac{e\tau^2 \operatorname{Re}\sigma}{m^*} \left(\frac{\partial S_2}{\partial x} - \frac{\partial S_1}{\partial y} + \frac{1}{\omega\tau}\frac{\partial S_3}{\partial x}\right)$$

"Stokes" parameters $S_{0} = |E_{\parallel}|^{2} \text{ intensity}$ $S_{1} = |E_{x}|^{2} - |E_{y}|^{2}$ $S_{2} = (E_{x}E_{y}^{*} + E_{y}E_{x}^{*})$ $S_{3} = i(E_{x}E_{y}^{*} - E_{y}E_{x}^{*})$ $\propto P_{circ}$

(ii) Currents by phase gradient

 $\boldsymbol{j}^{(\text{ph})} = -2 \frac{e\tau \operatorname{Re} \sigma}{m^* \omega} \operatorname{Im}(E_x \nabla E_x^* + E_y \nabla E_y^*) \quad \text{generalized photon drag}$ $\sigma \text{ the high-frequency conductivity}$

A.A. Gunyaga, M.V. Durnev, and S.A.T., Phys. Rev. B 108, 115402 (2023)

(I) PHOTOTHERMOELECTRIC CURRENT

Photothermoelectric current

$$\boldsymbol{j}^{(\mathrm{th})} = -2 \frac{e\tau \tau_{\varepsilon} \operatorname{Re} \sigma}{m^*} \nabla S_0$$

Stokes parameter $S_0 = \left| \boldsymbol{E}_{\parallel} \right|^2$ intensity

High-frequency conductivity

$$\operatorname{Re} \sigma = \frac{ne^2 \tau / m^*}{1 + (\omega \tau)^2}$$

Momentum and energy relaxation times

 τ and τ_{ε}

(II) CURRENTS DRIVEN BY POLARIZATION GRADIENTS

Currents by polarization gradients

$$j_x^{(\text{pol})} = -\frac{e\tau^2 \operatorname{Re}\sigma}{m^*} \left(\frac{\partial S_1}{\partial x} + \frac{\partial S_2}{\partial y} - \frac{1}{\omega\tau}\frac{\partial S_3}{\partial y}\right)$$
$$j_y^{(\text{pol})} = -\frac{e\tau^2 \operatorname{Re}\sigma}{m^*} \left(\frac{\partial S_2}{\partial x} - \frac{\partial S_1}{\partial y} + \frac{1}{\omega\tau}\frac{\partial S_3}{\partial x}\right)$$

Polarization Stokes parameters

$$S_{1} = |E_{x}|^{2} - |E_{y}|^{2} \propto P_{\text{lin}}$$
$$S_{2} = (E_{x}E_{y}^{*} + E_{y}E_{x}^{*}) \propto P_{\text{diag}}$$
$$S_{3} = i(E_{x}E_{y}^{*} - E_{y}E_{x}^{*}) \propto P_{\text{circ}}$$

PHOTOCURRENTS BY POLARIZATION GRADIENTS – I

A.A. Gunyaga, M.V. Durnev, and S.A.T., Phys. Rev. B **108**, 115402 (2023) Edge currents: M.V. Durnev and S.A.T., Appl. Sci. **13**, 4080 (2023)

PHOTOCURRENTS BY POLARIZATION GRADIENTS – II

Total current along the boundary between the domains excited by σ^+ and σ^- radiation

$$J_{y} = \int j_{y}(x)dx = -\frac{ne^{3}\tau^{2}[S_{3}(+\infty) - S_{3}(-\infty)]}{m^{*2}\omega(1+\omega^{2}\tau^{2})}$$

Estimation
$$J_y \sim 20 \ \mu A$$

for $n = 5 \cdot 10^{11} \text{cm}^{-2}$, $m^* = 0.3 \text{m}_0$
 $\tau = 1 \text{ ps}$, $\omega \tau = 1$, and $I = 1 \text{ kW/cm}^2$

A.A. Gunyaga, M.V. Durnev, and S.A.T., Phys. Rev. B **108**, 115402 (2023) Edge currents: M.V. Durnev and S.A.T., Appl. Sci. **13**, 4080 (2023)

(II) CURRENTS DRIVEN BY PHASE GRADIENT

Currents by the gradient of the phase

 $\boldsymbol{j}^{(\text{ph})} = -2 \frac{e\tau \operatorname{Re} \sigma}{m^* \omega} \operatorname{Im}(E_x \nabla E_x^* + E_y \nabla E_y^*)$ $\propto \boldsymbol{\nabla} \boldsymbol{\varphi}(\boldsymbol{r}) \text{ for the field } \boldsymbol{E}(\boldsymbol{r}) = \boldsymbol{E}_{\boldsymbol{0}} \exp[i \boldsymbol{\varphi}(\boldsymbol{r})]$

Example: oblique incidence of plane wave

✓ Here,

generalized photon drag effect

Phase in the 2DEG plane

 $\varphi = \boldsymbol{q}_{\parallel} \cdot \mathbf{r}$

Photocurrent $\boldsymbol{j} \propto \boldsymbol{q}_{\parallel} |E|^2$ photon drag

Photon drag:

A.M. Danishevskii et al., JETP (1970)
A.F. Gibson et al., Appl. Phys. Lett. (1970)
V.I. Perel', Ya.M. Pinskii, Phys. Solid State (1973)
J. Karch et al., Phys. Rev. Lett. (2010)
M.V. Entin, L.I. Magarill, D.L. Shepelyansky, Phys. Rev. B (2010)

TWISTED RADIATION BEAMS

Bessel beams

Electric field decomposed over plane waves

$$\boldsymbol{E}(\boldsymbol{r}, z) = E_0 e^{iq_z z} \sum_{\boldsymbol{q}_{\parallel}} a(\boldsymbol{q}_{\parallel}) \exp\left(i\boldsymbol{q}_{\parallel} \cdot \boldsymbol{r}\right) \boldsymbol{e}_{\boldsymbol{q}}$$

 $\propto \exp(im\varphi)$ m (integer) is the projection of total angular momentum polarization vector

Electric field in the beam

 E_0

ea

 $\boldsymbol{q} = (\boldsymbol{q}_{\parallel}, q_z)$

see B. A. Kn² and V. G. Serbo, Phys. Usp. **61**, 449 (2018) G. Molina-Terriza, J. P. Torres, and L. Torner, Nat. Phys. **3**, 305 (2007)

RADIAL AND AZIMUTHAL BESSEL BEAMS

Distribution of *E*-field in the cross-sections of the Bessel beams

Radial (composed of *p*-polarized waves) and azimuthal (of s-polarized waves) beams with m = 0

(a) $\boldsymbol{E}(\boldsymbol{r})$ (c)

Radial beams with $m = \pm 2$

PHOTOCURRENTS BY BE

E-fields and Photocurrents for radial Bessel be

Radial and azimuthal components of the photocurrent are controlled by the beam polarization and orbital angular momentum

$$j_r^{(\text{th})} = j_0 \frac{\tau_{\varepsilon}}{\tau} \{ J_{m+1}(J_m - J_{m+2}) - J_{m-1}(J_m - J_{m-2}) - [J_{m+1}(J_m - J_{m+2}) + J_{m-1}(J_m - J_{m-2})] p_3 \}$$

$$j_{r}^{(\text{pol})} + j_{r}^{(\text{ph})} = j_{0}J_{m}(J_{m+1} - J_{m-1}) p_{1},$$

$$j_{\varphi}^{(\text{pol})} + j_{\varphi}^{(\text{ph})} = j_{0}J_{m}(J_{m+1} - J_{m-1})\left(p_{2} + \frac{p_{3}}{\omega\tau}\right)$$

$$- \frac{j_{0}}{\omega\tau}J_{m}(J_{m+1} + J_{m-1}),$$

Inverse Faraday effect of twisted light

ФОТОГАЛЬВАНИЧЕСКИЕ ЭФФЕКТЫ - 2. ГЕОМЕТРИЧЕСКИЕ ЭФФЕКТЫ

 Краевой фотогальванический эффект и краевой эффект генерации второй гармоники

 Фототоки, индуцированные структурированным излучением. Вклады, связанные с градиентами интенсивности, поляризации, фазы э/м волны

