Хиральная нанофотоника

С. Г. Тиходеев

Физический факультет МГУ им. М.В. Ломоносова Институт общей физики РАН им. А.М. Прохорова

ЛЕТНЯЯ ШКОЛА ФОНДА «БАЗИС»

«СОВРЕМЕННЫЕ ПРОБЛЕМЫ ФИЗИКИ КОНДЕНСИРОВАННОГО СОСТОЯНИЯ»

21 ИЮЛЯ — 1 АВГУСТА 2024

Величъ, г. Звенигород

Collaboration

О.А.Дмитриева, Н.В. Валенко Физический факультет МГУ

С.А.Дьяков, Н.А.Гиппиус, И.М. Фрадкин Сколковский институт науки и технологии

Thomas Weiss Universität Graz, Austria & Universität Stuttgart, Germany

А.А.Деменев, Е.В.Филатов, А.А.Максимов, И.И.Тартаковский, В.Д. Кулаковский Институт физики твердого тела РАН, г. Черноголовка

K. Konishi & M. Kuwata-Gonokami The University of Tokyo, Tokyo, Japan Carl von Ossietzky Universität

C. Schneider Universität Oldenburg, Germany

Oldenburg

S. Höfling

Technische Physik & Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, Universität Würzburg, Germany

ПЛАН ЛЕКЦИЙ

- 1. Введение: хиральность и циркулярно-поляризованный свет, резонансы
- 2. Фотолюминесценция ахиральных квантовых точек в хиральном диэлектрическим волноводе
- 3. Как это устройство работает
- 4. Маршрутизация фотолюминесценции спин-поляризованных квантовых точек из хиральных фотонных структур
- 5. Лазеры циркулярно-поляризованного излучения на основе хиральных AlGaAs брэгговских микрорезонаторов
- 6. Мильтистабильности в хиральных микрорезонаторах
- 7. Метаповерхности с максимальной хиральностью и «закрученный» свет
- 8. Выводы

ПЛАН ЛЕКЦИИ 1

- 1. Введение: хиральность и циркулярно-поляризованный свет, резонансы
- 2. Фотолюминесценция ахиральных квантовых точек в хиральном диэлектрическим волноводе
- 3. Как это устройство работает
- 4. Маршрутизация фотолюминесценции спин-поляризованных квантовых точек из хиральных фотонных структур
- 5. Лазеры циркулярно-поляризованного излучения на основе хиральных AlGaAs брэгговских микрорезонаторов
- 6. Мильтистабильности в хиральных микрорезонаторах
- 7. Метаповерхности с максимальной хиральностью и «закрученный» свет
- 8. Выводы

Хиральность: объект не совпадает со своим отражением

Под это определение, вообщето, попадает практически все, что нас окружает

Хиральность: объект не совпадает со своим отражением

Хиральность: объект не совпадает со своим отражением

Мы будем обсуждать оптические свойства хиральных фотонных структур: фотонно-кристаллических слоев и метаповерхностей, а также хиральных микрорезонаторов

All-Dielectric Nanophotonics

Nanophotonics

2024, Pages 243-286

9 - Rational design of maximum chiral dielectric metasurfaces

Maxim V. Gorkunov, Alexander A. Antonov

Show more 🗸

😪 Share 🗦 Cite

https://doi.org/10.1016/B978-0-32-395195-1.00014-4 7

Get rights and content 🛪

M. Gorkunov, A. Antonov, *Rational design of maximum chiral dielectric metasurfaces. In book: All-Dielectric Nanophotonics,* Eds. A.S. Shalin, A.C. Valero and A. Miroshnichenko, Elsevier 2024 (pp.243-286) DOI:10.1016/B978-0-32-395195-1.00014-4

BASIS-2024, 29/07/2024, S.G. Tikhodeev

-		/1	
ĸ		/1	٧

Chiral Emission from Optical Metasurfaces and Metacavities

Jungho Han, Heejoo Jang, Yeonsoo Lim, Seongheon Kim, Jeheon Lee, and Young Chul Jun*

Adv. Photonics Res. 2024, 2400060 DOI: 10.1002/adpr.202400060

МОТИВАЦИЯ: компактные источники циркулярно-поляризованного света

Свет с большой степенью циркулярной поляризации (DCP) важен для многих применений:

- Дисплеи и оптические накопители
- Оптическая связь
- Биосенсоры
- Медицинская диагностика.

Фотолюминесценция хиральных материалов обладает либо низкой степенью циркулярной поляризации, либо идет с низкой квантовой эффективностью.

Достижение высоких DCP и квантовой эффективности одновременно остается чрезвычайно сложной задачей.

Альтернативный способ получения хирального света – использование обычных ахиральных излучателей и либо статического магнитного поля, либо четвертьволновых пластин. Однако это далеко не компактные источники света.

Компактные источники хирального света можно сделать с помощью обычных ахиральных излучателей и хиральных фотонных структур: фотонных кристаллов, метаповерхностей, резонаторов.

Хиральная циркулярно-поляризованная плоская волна

Лево-поляризованная волна (LCP), распространяющаяся вдоль

положительного направления оси х

$$\mathbf{E}(x, y, z, t) = \operatorname{Re}\left[(0, 1, i)\right) e^{-i\omega t + ikx}\right]$$

 $\mathbf{E}(0, y, z, 0) = (0, 1, 0)$

 $\mathbf{E}(0, y, z, T/2) = (0, 0, 1)$

© Николай Гиппиус

The electric field vectors of a traveling circularly polarized electromagnetic wave. This wave is right-handed/clockwise circularly polarized as defined from the point of view of the source, or left-handed/anti-clockwise circularly polarized if defined from the point of view of the receiver.

https://en.wikipedia.org/wiki/Circular_polarization

BASIS-2024, 29/07/2024, S.G. Tikhodeev

Отражение циркулярно-поляризованного света от ахирального зеркала

BASIS-2024, 29/07/2024, S.G. Tikhodeev

Отражение циркулярно-поляризованного света от зеркала с максимальной хиральностью

Оптическая активность и циркулярный дихроизм

T.e. вращение плоскости линейной поляризации и разница в поглощении лево- и право-поляризованного света

⇒ искусственные киральные структуры

Оптические свойства хиральных структур

В искусственных киральных структурах оптическая активность и циркулярный дихроизм могут быть рекордно большими

- A. Papakostas et al., PRL, 2003
- M. Kuwata-Gonokami et al, PRL, 2005

D.-H. Kwon et al., *Opt Express*, 2008 4th Physics, Stuttgart, H. Giessen tean
Na Liu et al., Nat. Photon. 2009
M. Hentschel et al., Nano Lett. 2012
M. Schäferling et al., PRX 2012
X. Yin et al., Nano Lett. 2013 & 2015 ...

Излучательную эффективность фотонных структур можно повышать с помощью фотонных резонансов.

Лекции Н.А.Гиппиуса, С.А.Дьякова и И.М.Фрадкина на нашей школе.

Небольшая историческая справка

Wood, R. W.

On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum *Philos. Mag.*, **1902**, *4*, 396 Ан

Аномалии Вуда в спектре отражения металлической дифракционной решетки

"... The study of this grating has been limited to the two or three days immediately preceding the closing of the laboratory for the summer, consequently I have been unable to give a very exhaustive account of its behaviour under other conditions, or secure any very satisfactory photographs of the peculiar spectra.

The few photographs which I have taken and which are reproduced, were made on some old orthochromatic plates, without any especial appliances, the plates being applied to the end of the spectrometer tube, while the slit was illuminated with a Nernst lamp, which makes the best source of light possible when a continuous spectrum is required..."

Фотографии спектров отражения при разных углах падения

BASIS-2024, 29/07/2024, S.G. Tikhodeev

распространяется вдоль решетки. Но это только часть аномалий Вуда.

Аномалии Вуда-Рэлея

Световой конус

Рэлей объяснил аномалии Вуда влиянием открытия нового канала дифракции, когда возникающая дифрагированная волна распространяется вдоль решетки. Но это только часть аномалий Вуда (аномалии Вуда-Рэлея).

Fano, U.

The theory of anomalous Diffraction Gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves) *J. Opt. Soc. Am.*, **1941**, *31*, 213

"...Our question is: "Is there left any proper value when the thickness vanishes?" To allow for vanishing thickness, not only the number of transversal wave-lengths but also the "additional fraction" must vanish, that is, the sum of the

"phases" at the surfaces must be a multiple of 180". (This condition is, of course, independent of the properties of the glass plate considered.) The answer given by actual calculation⁹ is:

One and only one proper value exists and this only if the wave is polarized with its magnetic vector parallel to the surface.

The possibility of a solution is essentially due to the negative sign of $\boldsymbol{\varepsilon}$, that is, to the possibility of concentrating such strong charges on a metallic surface as to invert the direction of the normal component of the electric field. The dependence on the polarization is then obvious, since no analogous magnetic property exists..." The equation determining the proper value of the

Ritchie, R. H. Plasma Losses by Fast Electrons in Thin Films *Phys. Rev.*, **1957**, *106*, 874 ⁹ The equation determining the proper value of the momentum is:

 $n^{2}\xi_{n+} + \xi_{n-} = n^{2}(k_{o}^{2} - \xi_{t}^{2})^{\frac{1}{2}} + (n^{2}k_{o}^{2} - \xi_{t}^{2})^{\frac{1}{2}} = 0,$ if the magnetic vector is parallel to the surface, and:

 $\xi_{n+} + \xi_{n-} = (k_o^2 - \xi_i^2)^{\frac{1}{2}} + (n^2 k_o^2 - \xi_i^2)^{\frac{1}{2}} = 0,$

if the electric vector is parallel to the surface.

Резонансные аномалии Вуда-Фано

Фано объяснил оставшиеся аномалии Вуда тем, что падающая волна возбуждает в металлической решетке поверхностные плазмон-поляритонные волны (резонансные аномалии Вуда-Фано)

 k_{χ}

Lπ

ПЛАН ЛЕКЦИИ 1

1. Введение: хиральность и циркулярно-поляризованный свет, резонансы

- Фотолюминесценция ахиральных квантовых точек в хиральном диэлектрическим волноводе
- 3. Как это устройство работает
- 4. Маршрутизация фотолюминесценции спин-поляризованных квантовых точек из хиральных фотонных структур
- 5. Лазеры циркулярно-поляризованного излучения на основе хиральных AlGaAs брэгговских микрорезонаторов
- 6. Мильтистабильности в хиральных микрорезонаторах
- 7. Метаповерхности с максимальной хиральностью и «закрученный» свет
- 8. Выводы

K.Konishi *et al.* Circularly Polarized Light Emission from Semiconductor Planar Chiral Nanostructures. *Phys. Rev. Lett.* **106,** 057402 (2011)

Photonic resonances in chiral structures as a route to emitters of circularly polarized light

• The photoluminescence of InAs QDs from a chiral GaAs waveguide was partially circularly polarized.

- Opposite polarization senses for rightand left-twisted gammadions.
- But measured ρ_c was 26% maximum

Verifying the theory for chiral GaAs planar waveguide K. Konishi *et al,* 2011

Experiment K. Konishi *et al,* 2011

S. V. Lobanov *et al.*,Opt. Lett. 40, 1528 (2015)

Calculation with accounting for final aperture 0.03

BASIS-2024, 29/07/2024, S.G. Tikhodeev

S. V. Lobanov *et al.* Polarization control of quantum dot emission by chiral photonic crystal slabs. *Opt. Lett.* **40**, 1528 (2015)

Chiral GaAs planar waveguide with InAs QDs: Optimized structure, theory

p = 920 nm h_{PCS} = 520 nm h_{WG} = 310 nm Achiral QDs can emit circularly polarized light due to quasiguided photonic resonances in a specially designed chiral photonic crystal slab

S.V. Lobanov *et al.* Controlling circular polarization of light emitted by quantum dots using chiral photonic crystal slabs. *Phys. Rev. B* **92**, 205309 (2015)

M5268_3_3b SEM

S.V. Lobanov et al. Controlling circular polarization of light emitted by quantum dots using chiral photonic crystal slabs. *Phys. Rev. B* **92**, 205309 (2015)

Chiral GaAs planar waveguide: Optimized structure, experiment

- Experimentally achieved ρ_c exceeds 80%.
- Unpolarized background due to manufacturing imperfections.
- ρ_c up to 96% after subtracting this background from the spectra.

BASIS-2024, 29/07/2024, S.G. Tikhodeev

Chiral GaAs planar waveguide. Optimized structures, theory and experiment:

Degree of circular polarisation: theory (black circles) and experiment (red)

ПЛАН ЛЕКЦИИ 1

- 1. Введение: хиральность и циркулярно-поляризованный свет, резонансы
- 2. Фотолюминесценция ахиральных квантовых точек в хиральном диэлектрическим волноводе
- 3. Как это устройство работает
- 4. Маршрутизация фотолюминесценции спин-поляризованных квантовых точек из хиральных фотонных структур
- 5. Лазеры циркулярно-поляризованного излучения на основе хиральных AlGaAs брэгговских микрорезонаторов
- 6. Мильтистабильности в хиральных микрорезонаторах
- 7. Метаповерхности с максимальной хиральностью и «закрученный» свет
- 8. Выводы

The key to understand the physical mechanism of the effect: the expected oscillating dependence of ρ_c on the chiral slab thickness (simulation)

BASIS-2024, 29/07/2024, S.G. Tikhodeev

<u> C_4 symmetry</u>: the electromagnetic field *F=E,H* transforms after 90°- rotation as

$$\{F_x(-y,x), F_y(-y,x)\} = i^n \{F_y(x,y), -F_x(x,y)\}$$

n = -1, 0, 1, 2

where

At $n=\pm 1$ the modes are optically active (coupled to the circularly polarazed σ^{\pm} waves outside the structure. For example,

$$\mathbf{E}^{-} = E \frac{\mathbf{e}_{x} + i \mathbf{e}_{y}}{\sqrt{2}} e^{i k_{0} z - i \omega t}$$
 corresponds to $n = -1$

Time-reversal invariance:

$$\{E_x(x,y), E_y(x,y)\} e^{iK_z z}$$
 $\{H_x(x,y), H_y(x,y)\} e^{iK_z z}$

$$K_z^+ = K_z^-, E^+ = (E^-)^*, H^+ = (H^-)^*$$

- Сам по себе такой хирально-модулированный слой не является хиральным (симметрия С_{4h}, а не С₄). Система становится хиральной, например, из-за наличия подложки (нарушение зеркальной симметрии).
- Хирально-модулированный слой вместе с верхним и нижним интерфейсами работает как полуволновая пластина, частично (в идеале – полностью) отфильтровывая излучение, поляризованное по часовой или против часовой стрелки

Mode # 1

BASIS-2024, 29/07/2024, S.G. Tikhodeev

Mode # 1'

Mode # 2'

Mode # 3'

Mode # 4'
The transmission amplitude from mode # *i* to mode # *j* through the interface can be estimated as

$$t_{i \to j} = \iint_{-p/2}^{p/2} \mathrm{d}x \mathrm{d}y \frac{\mathbf{E}_j^* \times \mathbf{H}_i + \mathbf{E}_i \times \mathbf{H}_j^*}{2}$$

where

$$\mathbf{E} \times \mathbf{H} = E_x H_y - E_y H_x$$

Chiral GaAs planar waveguide: how it works

$$T^{\pm} = \left| t_{1 \to 1'}^{\pm} \cdot t_{1' \to 1''}^{\pm} \cdot e^{iK_{z1'}L} + t_{1 \to 2'}^{\pm} \cdot t_{2' \to 1''}^{\pm} \cdot e^{iK_{z2'}L} \right|^2$$

or

$$T^{\pm} = \frac{T_0^{\pm}}{4} \left| 1 + \eta^{\pm} \mathrm{e}^{i\Delta KL + \varphi^{\pm}} \right|^2$$

 $T_0^{\pm} = 4|t_1^{\pm}|_{1} \cdot t_{1'}^{\pm}|_{1'}|^2, \quad \Delta K = K_{z2'} - K_{z1'}$

where

$$\eta^{\pm} = \left| \frac{t_{1 \to 2'}^{\pm} \cdot t_{2' \to 1''}^{\pm}}{t_{1 \to 1'}^{\pm} \cdot t_{1' \to 1''}^{\pm}} \right| \quad \varphi^{\pm} = \arg\left(\frac{t_{1 \to 2'}^{\pm} \cdot t_{2' \to 1''}^{\pm}}{t_{1 \to 1'}^{\pm} \cdot t_{1' \to 1''}^{\pm}}\right)$$

$$\text{If} \quad \eta^{\pm} \approx 1 \qquad T^{\pm} = T_0^{\pm} \cos^2 \frac{\Delta KL + \varphi^{\pm}}{Q}$$

2

Chiral GaAs planar waveguide: how it works

Comparison with FMM numerical simulations (with 401 harmonics)

Variable	FMM	Approximate equation; approximate fields	Relative difference	Approximate equation; exact fields	Relative difference
$t^+_{1 o 1'}$	0,0093 + 0,0673i	-0,0256 + 0,0830i	25%	-0,0273 + 0,0884i	26%
$t^{1 o 1'}$	-0,0487 - 0,0564i	-0,0256 - 0,0830i	22%	-0,0273 - 0,0884i	23%
$t^+_{1 ightarrow 2'}$	-0,0452 + 0,0220i	-0,0830 + 0,0256i	28%	-0,0736 + 0,0075i	26%
$t^{1 o 2'}$	-0,0417 + 0,0199i	-0,0830 - 0,0256i	46%	-0,0736 - 0,0075i	35%
$t^+_{1' o 1''}$	0,5774 - 0,0613i	0,4820	11%	0,6715	9%
$t^{1' o 1''}$	0,5734 - 0,0994i	0,4820	13%	0,6715	11%
$t^+_{2' o 1''}$	0,7290 - 0,0561i	0,4820	21%	0,7911	5%
$t_{2' \rightarrow 1''}$	0,7277 - 0,0122i	0,4820	20%	0,7911	4%
T_{0}^{+}	0,0062	0,0070	6%	0,0154	43%
T_{0}^{-}	0,0075	0,0070	4%	0,0154	34%
η^+	0,9316	1,0000	4%	0,9424	1%
η^-	0,7752	1,0000	13%	0,9424	10%
$ arphi^+-arphi^- $	139	111	11%	134	2%

$$\rho_{c,T} = (T^+ - T^-)/(T^+ + T^-)$$

(exact: blue curve)

Calculated transmission through the chiral layer in circular polarizations and the circular polarization selectivity of transmission

Chiral GaAs planar waveguide: how it works

ПЛАН ЛЕКЦИИ 1

- 1. Введение: хиральность и циркулярно-поляризованный свет, резонансы
- 2. Фотолюминесценция ахиральных квантовых точек в хиральном диэлектрическим волноводе
- 3. Как это устройство работает
- 4. Маршрутизация фотолюминесценции спин-поляризованных квантовых точек из хиральных фотонных структур
- 5. Лазеры циркулярно-поляризованного излучения на основе хиральных AlGaAs брэгговских микрорезонаторов
- 6. Мильтистабильности в хиральных микрорезонаторах
- 7. Метаповерхности с максимальной хиральностью и «закрученный» свет
- 8. Выводы

Если можно заставить неполяризованные квантовые точки излучать циркулярно-поляризованный свет, без приложения статического магнитного поля, и без необходимости в фильтрации толстыми волновыми пластинами, нельзя ли заставить спин-поляризованные квантовые точки излучать вверх или вниз, в зависимости от направления поляризации?

Маршрутизатор фотонов.

Пример оптимизированной структуры симметрии С4

Silicon bimetasurface, a=4b=2c=796 nm, h=690 nm, d=401 nm

The chiral doublet of k=0 Fano resonances is responsible for the perfect photonic routing

Silicon bimetasurface, a=4b=2c=796 nm, h=690 nm, d=401 nm

The chiral doublet of k=0 Fano resonances is responsible for the perfect photonic routing

T/4

Попытка изготовления: C. Schneider et al., Universität Würzburg

К сожалению, свободноподвешенную хиральную GaAs мета-мембрану со слоем InAs квантовых точек и даже симметрии C4 изготовить пока не удалось

Vertical Routing of Spinning Point Dipole (Quantum Dot) Radiation

- Silicon nanomembrane with two chiral photonic crystal slabs (PCS)
- The upper and lower PCS are mirror-symmetric: the point symmetry of the nanomembrane is D₄ (vertical C₄ & two horizontal C₂)
- Emitting point dipole (quantum dot) is in the center of symmetry point
- The structure was optimized for routing of 1.55 mm photons in Si:

a = 801 nm b = a/4 c = a/2 h = 686 nm d = 401 nm

S.A. Dyakov *et al.* Vertical Routing of Spinning-Dipole Radiation from a Chiral Metasurface *Phys. Rev. Appl.* **14,** 024090 (2020)

A perfect photonic router

We show that spinning dipoles in the specially designed chiral D4-symmetrical

bimetasurface membrane can emit light either upward or downward depending on their rotation direction.

SIlicon bimetasurface, a=4b=2c=801 nm, h=686 nm, d=401 nm

Симметрия структуры и условие идеальной маршрутизации

поле х- и уполяризованных диполей $\vec{E}_{\mathrm{u}}^{x} = [\alpha, \beta]$ $\vec{E}_{\mathrm{d}}^{x} = [\rho, \tau]$ $\vec{E}_{\mathrm{u}}^{y} = [-\beta, \alpha]$ $\vec{E}_{\mathrm{d}}^{y} = [-\tau, \rho]$

в D4 симметричной структуре

$$\rho = \alpha$$
$$\tau = -\beta$$

 $\vec{E}_{u}^{\sigma^{\pm}} = \vec{E}_{u}^{x} \pm i \vec{E}_{u}^{y} = (\alpha \mp i\beta) [1, \pm i]$ $\vec{E}_{d}^{\sigma^{\pm}} = \vec{E}_{d}^{x} \pm i \vec{E}_{d}^{y} = (\rho \mp i\tau) [1, \pm i]$

Условие идеальной маршрутизации в С₄ симметричной структуре

$$lpha=-ieta,$$
 и $ho=i au$

или
$$lpha=ieta,$$
 и $ho=-i au$

Условие идеальной маршрутизации в D₄ симметричной структуре

$$lpha \ = \ -ieta$$
 или $lpha \ = ieta$

$$\vec{E}_{u}^{\sigma^{+}} = [2\alpha, 2i\alpha], \qquad \vec{E}_{u}^{\sigma^{-}} = [0, 0],$$
$$\vec{E}_{d}^{\sigma^{+}} = [0, 0], \qquad \vec{E}_{d}^{\sigma^{-}} = [2\alpha, -2i\alpha]$$

Метод расчета

Излучаемость: $I = P/P_0$

$$\begin{split} \vec{u} &= \mathbb{S}_{22}^{u} \left(\mathbb{S}_{21}^{d} \mathbb{S}_{12}^{u} - \mathbb{I} \right)^{-1} \left(\vec{j}_{d} - \mathbb{S}_{21}^{d} \vec{j}_{u} \right) \\ \vec{d} &= \mathbb{S}_{11}^{d} \left(\mathbb{I} - \mathbb{S}_{12}^{u} \mathbb{S}_{21}^{d} \right)^{-1} \left(\vec{j}_{u} - \mathbb{S}_{12}^{u} \vec{j}_{d} \right) \\ \begin{bmatrix} \vec{j}_{u} \\ \vec{j}_{d} \end{bmatrix} &= \mathbb{F}^{-1} \begin{bmatrix} -K_{x} \tilde{\varepsilon}^{33} J_{z} / k_{0} \\ -K_{y} \tilde{\varepsilon}^{33} J_{z} / k_{0} \\ -iJ_{y} + i \tilde{\varepsilon}^{23} J_{z} \\ +iJ_{x} - i \tilde{\varepsilon}^{13} J_{z} \end{bmatrix} \end{split}$$
Фурье-компоненты тока:
$$J_{\alpha} = j_{\alpha} e^{-i\vec{r}_{0} \left(\vec{k}_{\parallel} + \vec{G}_{mn} \right)} \\ \alpha = x, y, z \qquad \vec{G}_{mn} = \begin{bmatrix} \frac{2\pi m}{a}, \frac{2\pi n}{a} \end{bmatrix}$$

 $\vec{j} = [1, \pm i, 0]$

+ диполь вращается против часовой стрелки если смотреть с положительного направления оси z (о⁺ диполь)

Lobanov, S. V., et al (2012). *Physical Review B*, *85*(15), 155137.

Спектры излучаемости

 $\eta^{\pm} = \frac{I_{\rm u}^{\pm} - I_{\rm d}^{\pm}}{I_{\rm u}^{\pm} + I_{\rm d}^{\pm}}$

коэффициенты маршрутизации излучения от σ⁺ и σ⁻ диполей

полный коэффициент маршрутизации

$$\eta^{\rm tot} = -\eta^+ \eta^-$$

$$\begin{aligned} \alpha &= -i\beta \\ \lambda &= 1.55\,\mu\mathrm{m} \end{aligned} \qquad \begin{aligned} \alpha &= i\beta \\ \lambda &= 1.5536\,\mu\mathrm{m} \end{aligned}$$

Условие идеальной маршрутизации

в D₄ симметричной структуре

Дисперсии квазиволноводных мод

Резонансы Фано

$$x(\omega) = e(\omega) + b(\omega) = \frac{f}{\omega - \omega_0 + i\gamma} + b(\omega)$$

- х-компонента электрического поля излучения о+ поляризованного диполя в направлении вертикально вверх и вертикально вниз
- учтена только основная (распространяющаяся) гармоника

Зависимость маршрутизации от положения диполя

Угловая зависимость маршрутизации

Зависимость маршрутизации от геометрических параметров

Поляризация излучения

поле х- и у-поляризованных диполей

в D4 симметричной структуре

$$\rho = \alpha$$

$$au = -eta$$

Условие идеальной маршрутизации в D₄ симметричной структуре

$$lpha \ = \ -ieta$$
или $lpha \ = ieta$

Исловие
$$egin{array}{ll} lpha &= -ieta \end{array}$$
 выполнено при $\lambda = 1.55\,\mu{
m m}$ $ec{E}_{
m u}^{\sigma^+} = [2lpha, 2ilpha], & ec{E}_{
m u}^{\sigma^-} = [0,0], \\ ec{E}_{
m d}^{\sigma^+} = [0,0], & ec{E}_{
m d}^{\sigma^-} = [2lpha, -2ilpha] \end{array}$

- Следовательно, если смотреть на излучение от структуры, произведенное обоими типами диполей, вектор электрического поля будет вращаться в одинаковом направлении.
- При этом на излучение от о⁺ диполя мы смотрим сверху, от о⁻ диполя - снизу

ПЛАН ЛЕКЦИИ 2

- 1. Введение: хиральность и циркулярно-поляризованный свет, резонансы
- 2. Фотолюминесценция ахиральных квантовых точек в хиральном диэлектрическим волноводе
- 3. Как это устройство работает
- 4. Маршрутизация фотолюминесценции спин-поляризованных квантовых точек из хиральных фотонных структур
- 5. Лазеры циркулярно-поляризованного излучения на основе хиральных AlGaAs брэгговских микрорезонаторов
- 6. Мильтистабильности в хиральных микрорезонаторах
- 7. Метаповерхности с максимальной хиральностью и «закрученный» свет
- 8. Выводы

A.A. Demenev et al., Circularly polarized lasing in chiral modulated semiconductor microcavity with GaAs quantum wells. *Appl. Phys. Lett.* **109**, 171106 (2016)

Лазеры циркулярно-поляризованного излучения на основе AlGaAs брэгговских микрорезонаторов, оптическая накачка

V.D.Kulakovskii et al., J. Phys: Conf. Ser. 1092, 012071 (2018)

Лазеры циркулярно-поляризованного излучения на основе AlGaAs брэгговских микрорезонаторов, оптическая накачка

Т= 10К

Спектры излучения в о± поляризациях при накачке P = 1.15, 1.4 и $1.7 P_{thr}$ демонстрируют синий сдвиг частоты излучения: экситонполяритонный лазер с почти циркулярно-поляризованным излучением A.A.Maksimov et al., Circularly Polarized Laser Emission from an Electrically Pumped Chiral Microcavity. *Phys. Rev. Appl. 17, L021001 (2022)*

Лазеры циркулярно-поляризованного излучения на основе AlGaAs брэгговских микрорезонаторов, электрическая накачка

A.A.Maksimov et al., Circularly Polarized Laser Emission from an Electrically Pumped Chiral Microcavity. *Phys. Rev. Appl. 17, L021001 (2022)*

Лазеры циркулярно-поляризованного излучения на основе AlGaAs брэгговских микрорезонаторов, электрическая накачка

Спектры излучения киральной структуры выше (a, b) и ниже (c, d)

порогового тока $J_{th} \approx 10$ mA.

(а) Зависимость интенсивности
излучения киральной структуры
от возбуждающего тока J
(b) Типичная зависимость степени
циркулярной поляризации
излучения киральной структуры
ρ_C от тока J.

A.A.Maksimov et al., Circularly Polarized Laser Emission from an Electrically Pumped Chiral Microcavity. *Phys. Rev. Appl. 17, L021001 (2022)*

Лазеры циркулярно-поляризованного излучения на основе AlGaAs брэгговских микрорезонаторов, электрическая накачка

(a)(a)(b)(b)(b)(b)(b)(c)

The emission spectra in the developed lasing regime in σ^+ and σ^- circular polarizations of chiral laser structure with the achieved value $\rho_c \approx 90\%$.

The emission spectra in the developed lasing regime in σ^+ and σ^- circular polarizations of two laser structures with close parameters but with opposite handedness of the photonic crystal

Calculated spectra of the light emission efficiency of chiral etched MC as functions of etching depth Netch:

(a) Degree of Circular polarisation (DCP); (b) Intensities in σ +; (c) in σ - polarisations

White rectangles show the range of experimentally realized lasing with etching depth Netch ~ 4.7

Bragg reflexes of Fabry-Perot resonances in the modulated cavity to control the polarisation state of the main resonance

Calculated dependencies on the etching depth $\rm N_{etch}\,$ of:

- (a) DCP spectra of the light emission efficiency in chiral etched MC
- (b) Transmissions of the etched upper DBR in σ ± polarisations at E_{res}=1542.5 meV
- (c) DCP of DBR transmission in comparison
 - with DCP of MC emission efficiency at

E_{res}=1542.5 meV

AlGaAs Bragg microcavity with active GaAs QWs and chiral modulation of the top mirror: RESONANT MODES in linear regime

Possible reasons for C4 symmetry breaking and removal of degeneracy:

- weak deviations of the photonic crystal symmetry from the nominal C4 (e.g., a slightly rectangular lattice instead of a square lattice);
- photon mode or exciton anisotropy in the quantum well of the microresonator;
- spontaneous deviation of the radiation direction from the normal to the structure;
- the absence of rotational symmetry of the excitation region (e.g., its ellipticity)

Frequency and width dispersion of resonant modes near the **Г**-point

k=0.4 μ m⁻¹ corresponds approx. to θ =3°

Dispersion of the Stokes parameter S3 and widths of resonant modes near the $\Gamma\text{-point}$

k=0.4 μ m⁻¹ corresponds approx. to θ =3°

Dispersion of the Stokes parameter S1, S2 and S3

k=0.4 μ m⁻¹ corresponds approx. to θ =3°
ПЛАН ЛЕКЦИИ 2

- 1. Введение: хиральность и циркулярно-поляризованный свет, резонансы
- 2. Фотолюминесценция ахиральных квантовых точек в хиральном диэлектрическим волноводе
- 3. Как это устройство работает
- 4. Маршрутизация фотолюминесценции спин-поляризованных квантовых точек из хиральных фотонных структур
- 5. Лазеры циркулярно-поляризованного излучения на основе хиральных AlGaAs брэгговских микрорезонаторов
- 6. Мильтистабильности в хиральных микрорезонаторах
- 7. Метаповерхности с максимальной хиральностью и «закрученный» свет
- 8. Выводы

Экситон-поляритонная мультистабильность в хиральном полупроводниковом микрорезонаторе при резонансной оптической накачке Постер Ольги Дмитриевой на нашей Школе

$$(\omega - \omega_C)\mathcal{E}_{\pm} = \alpha_{\pm}\mathcal{E}_{\text{ext},\pm} + \beta\mathcal{P}_{\pm},$$
$$(\omega - \omega_X)\mathcal{P}_{\pm} = A\mathcal{E}_{\pm} + F|\mathcal{P}_{\pm}|^2\mathcal{P}_{\pm}$$

(1): линейное уравнение Максвелла в резонансном приближении
(2) нелинейное уравнение Гросса-Питаевского.
Оба уравнения написаны в σ[±] базисе.
[*N.A.Gippius et al.*, PRL **98**, 236401 (2007)]

В линейном режиме взаимность уравнений Максвелла приводит к вырождению Фано резонансов по спину: резонансные частоты ω_C и ω_X а также константы связи *b* и *A* **HE ЗАВИСЯТ** от знака циркулярной поляризации [*B. Hopkins et al.*, Laser Photonics Rev. **10**, 137 (2016)].

Только (д[±]), константа связи внешнего поля и поля внутри резонатора зависит от знака циркулярной поляризации.

В нелинейном случае (*F*≠0) это приводит у снятию вырождения между лево- и право-поляризованными состояниями!

Exciton-polariton multistability in Achiral semiconductor microcavity under resonant optical pump

The cubic equation for the polarization as a function of the external electric field

$$\mathcal{P}_{\pm}\left[(\omega - \omega_{C})(\omega - \omega_{X} - F |\mathcal{P}_{\pm}|^{2}) - \Omega_{R}^{2}\right] = A\alpha_{\pm}\mathcal{E}_{\text{ext}\pm}$$

results in a well known bistability of the response and S-shaped dependence of the polariton intensity on the external pump

All dependencies here are calculated for unmodulated achiral microcavity with $\alpha_+ = \alpha_-$

$$I_0 = \frac{c}{8\pi} \frac{A}{F} \approx 3.5 \text{ W/cm}^2$$

BASIS-2024, 30/07/2024, S.G. Tikhodeev

Exciton-polariton multistability in Achiral semiconductor microcavity under resonant optical pump

$$\mathcal{P}_{\pm}\left[(\omega - \omega_{C})(\omega - \omega_{X} - F |\mathcal{P}_{\pm}|^{2}) - \Omega_{R}^{2}\right] = A\alpha_{\pm}\mathcal{E}_{\text{ext}\pm}$$

The bistable jumps and hysteresis are caused by the approaching and crossing of the resonance frequency to the pump frequency with increase of the pump intensity

Exciton-polariton multistability in chiral semiconductor microcavity under resonant optical pump

$$\mathcal{P}_{\pm}\left[(\omega - \omega_C)(\omega - \omega_X - F |\mathcal{P}_{\pm}|^2) - \Omega_R^2\right] = A\alpha_{\pm}\mathcal{E}_{\text{ext}\pm}$$

In case of a chiral MC $\alpha_+ \neq \alpha_-$.

Nice thing is that S-curves for the right and left circular polarizations differ only by the scale along the horizontal intensity axis.

Panel (a) shows the resulting jumps of the polariton intensity for a chiral MC with large difference between α_{+} and α_{-} (MC optimized for circularly polarized spontaneous emission).

Panel (b) is for slightly different $\alpha_{\text{+}}$ and $\alpha_{\text{-}}$ (unoptimized MC)

BASIS-2024, 30/07/2024, S.G. Tikhodeev O.A.Dmitrieva et al., Doklady **510**, 10 (2023)

Exciton-polariton multistability in chiral semiconductor microcavity under resonant optical pump

For the linearly polarized resonant pump we have just to sum up the curves on the previous page.

As a result, the response becomes multistable.

Exciton-polariton multistability in chiral semiconductor microcavity under resonant optical pump

Multistability is accompanied by sharp jumps in the degree of circular polarization (DCP)

 $\rho_c = \frac{|\mathcal{P}_R|^2 - |\mathcal{P}_L|^2}{|\mathcal{P}_R|^2 + |\mathcal{P}_L|^2}$

of the response on the linearly polarized resonant optical pump.

Interestingly, the relative magnitude of the DCP jumps is even larger in case of unoptimized MC

Exciton-polariton multistability in **optimized** chiral semiconductor microcavity

BASIS-2024, 30/07/2024, S.G. Tikhodeev

Exciton-polariton multistability in **unoptimized** chiral semiconductor microcavity

BASIS-2024, 30/07/2024, S.G. Tikhodeev

Self-consistent accounting for field distribution in the multiple QWs of the chiral MC

All shown results were calculated in the mean field approximation, replacing the multiple QWs of the structure by one "effective" QW. However, the actual distribution of the electric field can be self-consistently accounted for and the results do not change qualitatively and even quantitatively

